139 resultados para entrainment mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of NO during the regeneration period of a Pt-Ba/Al O Lean NO Trap (LNT) catalyst modifies significantly the evolution of products formed from the reduction of stored nitrates, particularly nitrogen and ammonia. The use of isotope labelling techniques, feeding NO during the storage period and NO during regeneration allows us to propose three different routes for nitrogen formation based on the different masses detected during regeneration, i.e. N (m/e = 28), N N (m/e = 29) and N (m/e = 30). It is proposed that the formation of nitrogen via Route 1 involves the reaction between hydrogen and NO released from the storage component to form NH mainly. Then, ammonia further reacts with NO located downstream to form N . In Route 2, it is postulated that the incoming NO reacts with hydrogen to form NH in the reactor zone where the trap has been already regenerated. This isotopically labelled ammonia travels through the catalyst bed until it reaches the regeneration front where it participates in the reduction of stored nitrates ( NO ) to form N N. The formation of N via Route 3 is believed to occur by the reaction between incoming NO and H . The modification of the hydrogen concentration fed during regeneration affects the relative importance of H or NH as reductants and thus the production of N via Route 1 and N N via Route 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique feature ofmitochondrial complex I is the so-called A/D transition (active-deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~10 min) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1-10 min) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys of mitochondrially encoded subunit ND3 makes the Dform susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the layered silicate clay platelets on the nitrogen permeation properties of hydrogenated nitrile butadiene rubber (HNBR)/nanoclay nanocomposites has been investigated. Nanocomposites of HNBR modified with different percentages of the organoclay are processed through various routes. Commercially available organoclay (CLOISITE 15A) and various silane-coupling agents are used to improve the dispersion of the nanoclay in HNBR. A total of 10 different formulations of nanocomposites are manufactured. The addition of the organoclay has resulted in a significant enhancement of the nitrogen barrier properties of the manufactured nanocomposite. The mechanism of the reduction in the permeability is explained through the changes in the morphology and its bond to the filler. These changes are confirmed through examination of the morphology using x-ray diffraction, transmission electron microscope, and dynamic mechanical thermal analysis. There has been a drastic reduction up to 55.7% in nitrogen permeability. The reduction in gas permeation in HNBR is attributed to uniformly exfoliated clay platelets. Finally, three different permeability models, namely, the Nielsen model, modified Nielsen model, and Cussler model, have also been considered to predict the permeability behavior of nanocomposites with different volume filler fractions. The experimental values of gas permeability have been compared with theoretical models. It is observed that the modified Nielsen model closely matches with the measured permeation behavior. © 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three groups of cows representing three ranges of welfare in the production system were included in the study: two groups of Bruna dels Pirineus beef cattle maintained under different management systems (good and semiferal conditions) and a group of Alberes cows, a breed that lives in the mountains (hardest conditions).

In order to identify new stress/welfare biomarkers, serum from Bruna cows living in both environments was subjected to DIGE labelling, two-dimensional electrophoresis and MALDI-MS or ion trap MS. Identification was achieved for 15 proteins, which mainly belonged to three biological functions, the oxidative stress pathway (glutathione peroxidase (GPx) and paraoxonase (PON-1)), the acute phase protein family (Heremans Schmid glycoprotein alpha2 (α2-HSG)) and the complement system.

Biological validation included the Alberes breed. GPx and PON-1 were validated by an enzymatic assay and found to be higher and lower, respectively, in cows living in hard conditions. α2-HSG was validated by ELISA and found to be reduced in hard conditions. Other biomarkers of the redox status were also altered by living conditions: protein carbonyl content, superoxide dismutase (SOD) and glutathione reductase (GR).

Our results show that changes in the redox system are the main adaptation of cows living in challenging environmental conditions. This article is part of a Special Issue entitled: “Farm animal proteomics”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome biogenesis is a fundamental cellular process which is tightly regulated in normal cells. A number of tumour suppressors and oncogenes could affect the production of ribosomes at different levels and an upregulation could lead to increased protein biosynthesis which is one of the characteristic features of all cancer cells. Ribosome biogenesis is a very complex process which requires coordinated transcription by all three nucleolar polymerases and the first event in this process is synthesis of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I). Importantly, recent data has pictured rRNA transcription as a key regulator of whole ribosome biogenesis and therefore makes it a valid and very attractive target for anticancer therapy, as well as a perspective biomarker. However, at the moment there is only one known specific inhibitor of Pol I transcription (at stage one of clinical trials) and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. We have recently discovered that antitumor alkaloid ellipticine (isolated in 1959 from the plant species Ochrosia) is a potent inhibitor of Pol I transcription (both in vitro and in vivo). Ellipticine and its derivatives are known as efficient topoisomerase II inhibitors and inhibitors of some kinases, however we have shown that these inhibitory activities and the ability of ellipticine to repress Pol I activity are unrelated. Moreover, our preliminary data suggests that ellipticine specifically targets Pol I transcription and it has no effect on transcription by Pol II and Pol III at the same time scale. The possible mechanisms of inhibition of Pol I transcription by ellipticines will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a “reference” protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Organ dysfunction consequent to infection (‘severe sepsis’) is the leading cause of admission to an intensive care unit (ICU). In both animal models and early clinical studies the calcium channel sensitizer levosimendan has been demonstrated to have potentially beneficial effects on organ function. The aims of the Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS) trial are to identify whether a 24-hour infusion of levosimendan will improve organ dysfunction in adults who have septic shock and to establish the safety profile of levosimendan in this group of patients.

Methods/Design

This is a multicenter, randomized, double-blind, parallel group, placebo-controlled trial. Adults fulfilling the criteria for systemic inflammatory response syndrome due to infection, and requiring vasopressor therapy, will be eligible for inclusion in the trial. Within 24 hours of meeting these inclusion criteria, patients will be randomized in a 1:1 ratio stratified by the ICU to receive either levosimendan (0.05 to 0.2 μg.kg-1.min-1 or placebo for 24 hours in addition to standard care. The primary outcome measure is the mean Sequential Organ Failure Assessment (SOFA) score while in the ICU. Secondary outcomes include: central venous oxygen saturations and cardiac output; incidence and severity of renal failure using the Acute Kidney Injury Network criteria; duration of renal replacement therapy; serum bilirubin; time to liberation from mechanical ventilation; 28-day, hospital, 3 and 6 month survival; ICU and hospital length-of-stay; and days free from catecholamine therapy. Blood and urine samples will be collected on the day of inclusion, at 24 hours, and on days 4 and 6 post-inclusion for investigation of the mechanisms by which levosimendan might improve organ function. Eighty patients will have additional blood samples taken to measure levels of levosimendan and its active metabolites OR-1896 and OR-1855. A total of 516 patients will be recruited from approximately 25 ICUs in the United Kingdom.

Discussion

This trial will test the efficacy of levosimendan to reduce acute organ dysfunction in adult patients who have septic shock and evaluate its biological mechanisms of action.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-β-d-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K. Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levoglucosan (1,6-anhydro-β-d-glucopyranose) decomposition is an important step during cellulose pyrolysis and for secondary tar reactions. The mechanism of levoglucosan thermal decomposition was studied in this paper using density functional theory methods. The decomposition included direct CO bond breaking, direct CC bond breaking, and dehydration. In total, 9 different pathways, including 16 elementary reactions, were studied, in which levoglucosan serves as a reactant. The properties of the reactants, transition states, intermediates, and products for every elementary reaction were obtained. It was found that 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedialdehyde can be formed from the CO bond breaking decomposition reactions. 1,2-Dihydroxyethene and hydroxyacetic acid vinyl ester can be formed from the CC bond breaking decomposition reactions. It was concluded that CO bond breaking is easier than CC bond breaking due to a lower activation energy and a higher released energy. During the 6 levoglucosan dehydration pathways, one water molecule which composed of a hydrogen atom from C3 and a hydroxyl group from C2 is the preferred pathway due to a lower activation energy and higher product stability. © 2012 Elsevier B.V. All rights reserved.