189 resultados para eccentric strength
Resumo:
A combination of experiments and non-linear finite element analyses are used to investigate the effect of offset web holes on the web crippling strength of cold-formed steel channel sections under the end-two-flange (ETF) loading condition; the cases of both flanges fastened and unfastened to the support are considered. The web holes are located at the mid-depth of the sections, with a horizontal clear distance of the web holes to the near edge of the bearing plate. Finite element analysis results are compared against the laboratory test results; good agreement was obtained in terms of both strength and failure modes. A parametric study was then undertaken to investigate both the effect of the position of holes in the web and the cross-section sizes on the web crippling strength of the channel sections. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, and the ratio of the distance from the edge of the bearing to the flat depth of the web. Design recommendations in the form of web crippling strength reduction factors are proposed in this study.
Resumo:
To compare aerobic capacity, strength, flexibility, and activity level in extremely low birth weight (ELBW) adolescents at 17 years of age with term-born control subjects.
Resumo:
RC beams shear strengthened with externally bonded fiber-reinforced polymer (FRP) U strips or side strips usually fail owing to debonding of the bonded FRP shear reinforcement. Because such debonding usually occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups intersected by the critical shear crack may not have reached yielding at beam shear failure. Consequently, the yield stress of internal steel stirrups in such a strengthened RC beam cannot be fully utilized. This adverse shear interaction between the internal steel shear reinforcement and the external FRP shear reinforcement may significantly reduce the benefit of the shear strengthening FRP but has not been considered explicitly by any of the shear strength models in the existing design guidelines. This paper presents a new shear strength model considering this adverse shear interaction through the introduction of a shear interaction factor. A comprehensive evaluation of the proposed model, as well as three other shear strength models, is conducted using a large test database. It is shown that the proposed shear strength model performs the best among the models compared, and the performance of the other shear strength models can be significantly improved by including the proposed shear interaction factor. Finally, a design recommendation is presented.