143 resultados para cutting room
Resumo:
Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.
Resumo:
The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.
Resumo:
For a multiplicity of socio-economic, geo-political, strategic and identity-based reasons, Turkey’s progress towards EU membership is often treated as a sui generis case. Yet although Turkey’s accession negotiations with the European Union (EU) are essentially a bilateral – and often stormy – affair, they take place within a wider and dynamic process of enlargement in which not only can the gloomy – sometimes dark – shadows of past and prospective enlargements be clearly detected, but so too can the often chill winds from ongoing, parallel negotiations with other candidates. How the EU negotiates accession and what it expects from candidates has continued to evolve since the EU began drawing up its framework for negotiations with Turkey ten years ago. This paper charts this evolution by first identifying changes in the light of Croatia’s negotiating experience, the ‘lessons learnt’ by the EU in meeting the challenges of Bulgarian and Romanian accession, the EU’s handling of Iceland’s membership bid and accession negotiations, and the revised approach to negotiating accession evident in the more recent frameworks for accession negotiations with Montenegro and Serbia. The paper then explores the extent to which these changes have impacted on the approach the EU has adopted in framing and progressing accession negotiations with Turkey. In doing so, it questions both the consistency with which the EU’s negotiates accession and the extent to which Turkey’s progress towards EU membership is conditioned by the broader dynamics of EU enlargement as opposed to simply the dynamics within EU-Turkey relations and domestic Turkish reform efforts.
Resumo:
Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.
Resumo:
Microelectrode voltammetry is used to study the electrochemical reduction of dioxygen, O-2, in the room-temperature ionic liquid trihexyl(tetradecyl)phosphonium trifluorotris(pentafluoroethyl)phosphate [P6,6,6,14][FAP]. The nature of the unusual voltammetric waves is quantitatively modeled via digital simulation with the aim of clarifying apparent inconsistencies in the literature. The reduction is shown to proceed via a two-electron reaction and involve the likely capture of a proton from the solvent system. The oxidative voltammetric signals seen at fast scan rates are interpreted as resulting from the reoxidation of HO2 center dot. In the presence of large amounts of dissolved carbon dioxide the reductive currents decrease by a factor of ca. two, consistent with the trapping of the superoxide radical, O-2(center dot), intermediate in the two-electron reduction process.
Resumo:
The voltammetry for the reduction of 2-nitrotoluene at a gold microdisk electrode is reported in two ionic liquids: trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ([P-14,P-6,P-6,P-6][FAP]) and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][NTf2]). The reduction of nitrocyclopentane (NCP) and 1-nitrobutane (BuN) was investigated using voltammetry at a gold microdisk electrode in the ionic liquid [P-14,P-6,P-6,P-6][FAP]. Simulated voltammograms, generated through the use of ButlerVolmer theory and symmetric MarcusHush theory, were compared to experimental data, with both theories parametrizing the data similarly well. An experimental value for the Marcusian parameter, 1 was also determined in all cases. For the reduction of 2-nitrotoluene, this was 0.5 +/- 0.1 eV in both solvents, while for NCP and BuN in [P-14,P-6,P-6,P-6][FAP], it was 2 +/- 0.1 and 5 +/- 0.1 eV, respectively. This is attributed to the localization of charge on the nitro group and the primary nitro alkyls increased interaction with the environment, resulting in a larger reorganization energy.
Resumo:
Asymmetric MarcusHush (AMH) theory is applied for the first time in ionic solvents to model the voltammetric reduction of oxygen in 1-butyl-1-methylpyrrolidinium bis-(trifluoromethylsulfonyl)-imide and of 2-nitrotoluene (2-NT), nitrocyclopentane (NCP), and 1-nitro-butane (BuN) in trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate on a gold microdisc electrode. An asymmetry parameter, gamma, was estimated for all systems as -0.4 for the reduction of oxygen and -0.05, 0.25, and 0 +/- 0.05 for the reductions of 2-NT, NCP, and BuN, respectively, which suggests equal force constants of reactants and products in the case of 2-NT and BuN and unequal force constants for oxygen and NCP where the force constants of the oxidized species are greater than the reduced species in the case of oxygen and less than the reduced species in the case of NCP. Previously measured values for a, the Butler-Volmer transfer coefficient, reflect this in each case. Where appreciable asymmetry occurs, AMH theory was seen to parametrize the experimental data better than either Butler-Volmer or symmetric Marcus-Hush theory, allowing additionally the extraction of reorganization energy. This is the first study to provide key physical insights into electrochemical systems in room-temperature ionic liquids using AMH theory, allowing elucidation of the reorganization energies and the relative force constants of the reactants and products in each reaction.
Resumo:
The teaching and cultivation of professionalism is an integral part of medical education as professionalism is central to maintaining the public’s trust in the medical profession. Traditionally professional values would have been acquired through an informal process of socialisation and observation of role models. Recently, however, medical educators have accepted the responsibility to explicitly teach and effectively evaluate professionalism. A comprehensive working definition of the term professionalism and a universally agreed list of the constituent elements of professionalism are currently debated. The School of Medicine and Dentistry of The Queen’s University of Belfast uses an approach of self-directed learning for teaching anatomy, and students are given the opportunity to learn anatomy from human dissection. Self-directed learning teams have been found to be underutilised as educational strategies and presented an opportunity to utilise the first year dissection room teaching environment to nurture the development of the attributes of professionalism. An educational strategy based on role-playing was developed to engage all students around the dissection table. Students received comprehensive background reviews on professionalism, its attributes and the identification of such attributes in the context of the dissection room. Roles, with specific duties attached, were allocated to each team member. Circulating academic staff members directly observed student participation and gave formative feedback. Students were given the opportunity to reflect on their ability to identify the attributes and reflect on their own and their peer’s ability to develop and practise these attributes. This strategy indicated that small group learning teams in the dissection room utilise widely accepted principles of adult learning and offer an opportunity to create learning activities that will instil in students the knowledge, values, attitudes and behaviours that characterise medical professionalism. Anatomy faculty have a responsibility to nurture and exemplify professionalism and play a significant role in the early promotion and inculcation of professionalism. It remains imperative not only to assess this strategy but also to create opportunities for critical reflection and evaluation within the strategy. Key words: Medical Education – Professionalism – Anatomy - Reflective Practise – Role-play
Resumo:
The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.