147 resultados para authentic material
Resumo:
Milling of plant and soil material in plastic tubes, such as microcentrifuge tubes, over-estimates carbon (C) and under-estimates nitrogen (N) concentrations due to the introduction of polypropylene into milled samples, as identified using Fourier-transform infra-red spectroscopy.
This study compares C and N concentrations of roots and soil milled in microcentrifuge tubes versus stainless steel containers, demonstrating that a longer milling time, greater milling intensity, smaller sample size and inclusion of abrasive sample material all increase polypropylene contamination from plastic tubes leading to overestimation of C concentrations by up to 8 % (0.08 g g(-1)).
Erroneous estimations of C and N, and other analytes, must be assumed after milling in plastic tubes and milling methods should be adapted to minimise such error.
Resumo:
The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.
Resumo:
Background: Men can be hard to reach with face-to-face health-related information, while increasingly, research shows that they are seeking health information from online sources. Recognizing this trend, there is merit in developing innovative online knowledge translation (KT) strategies capable of translating research on men’s health into engaging health promotion materials. While the concept of KT has become a new mantra for researchers wishing to bridge the gap between research evidence and improved health outcomes, little is written about the process, necessary skills, and best practices by which researchers can develop online knowledge translation.
Objective: Our aim was to illustrate some of the processes and challenges involved in, and potential value of, developing research knowledge online to promote men’s health.
Methods: We present experiences of KT across two case studies of men’s health. First, we describe a study that uses interactive Web apps to translate knowledge relating to Canadian men’s depression. Through a range of mechanisms, study findings were repackaged with the explicit aim of raising awareness and reducing the stigma associated with men’s depression and/or help-seeking. Second, we describe an educational resource for teenage men about unintended pregnancy, developed for delivery in the formal Relationship and Sexuality Education school curricula of Ireland, Northern Ireland (United Kingdom), and South Australia. The intervention is based around a Web-based interactive film drama entitled “If I Were Jack”.
Results: For each case study, we describe the KT process and strategies that aided development of credible and well-received online content focused on men’s health promotion. In both case studies, the original research generated the inspiration for the interactive online content and the core development strategy was working with a multidisciplinary team to develop this material through arts-based approaches. In both cases also, there is an acknowledgment of the need for gender and culturally sensitive information. Both aimed to engage men by disrupting stereotypes about men, while simultaneously addressing men through authentic voices and faces. Finally, in both case studies we draw attention to the need to think beyond placement of content online to delivery to target audiences from the outset.
Conclusions: The case studies highlight some of the new skills required by academics in the emerging paradigm of translational research and contribute to the nascent literature on KT. Our approach to online KT was to go beyond dissemination and diffusion to actively repackage research knowledge through arts-based approaches (videos and film scripts) as health promotion tools, with optimal appeal, to target male audiences. Our findings highlight the importance of developing a multidisciplinary team to inform the design of content, the importance of adaptation to context, both in terms of the national implementation context and consideration of gender-specific needs, and an integrated implementation and evaluation framework in all KT work.
Predicting the crushing behaviour of composite material using high-fidelity finite element modelling
Resumo:
The capability to numerically model the crushing behaviour of composite structures will enable the efficient design of structures with high specific energy absorption capacity. This is particularly relevant to the aerospace and automotive industries where cabin structures need to be shown to be crashworthy. In this paper, a three-dimensional damage model is presented, which accurately represents the behaviour of composite laminates under crush loading. Both intralaminar and interlaminar failure mechanisms are taken into account. The crush damage model was implemented in ABAQUS/Explicit as a VUMAT subroutine. Numerical predictions are shown to agree well with experimental results, accurately capturing the intralaminar and interlaminar damage for a range of stacking sequences, triggers and composite materials. The use of measured material parameters required by the numerical models, without the need to ‘calibrate’ this input data, demonstrates this computational tool's predictive capabilities
Resumo:
Do patterns in the YouTube viewing analytics of Lecture Capture videos point to areas of potential teaching and learning performance enhancement? The goal of this action based research project was to capture and quantitatively analyse the viewing behaviours and patterns of a series of video lecture captures across several computing modules in Queen’s University, Belfast, Northern Ireland. The research sought to establish if a quantitative analysis of viewing behaviours coupled with a qualitative evaluation of the material provided from the students could be correlated to provide generalised patterns that could then be used to understand the learning experience of students during face to face lectures and, thereby, present opportunities to reflectively enhance lecturer performance and the students’ overall learning experience and, ultimately, their level of academic attainment.
Resumo:
The existence of loose particles left inside the sealed electronic devices is one of the main factors affecting the reliability of the whole system. It is important to identify the particle material for analyzing their source. The conventional material identification algorithms mainly rely on time, frequency and wavelet domain features. However, these features are usually overlapped and redundant, resulting in unsatisfactory material identification accuracy. The main objective of this paper is to improve the accuracy of material identification. First, the principal component analysis (PCA) is employed to reselect the nine features extracted from time and frequency domains, leading to six less correlated principal components. And then the reselected principal components are used for material identification using a support vector machine (SVM). Finally, the experimental results show that this new method can effectively distinguish the type of materials including wire, aluminum and tin particles.
Resumo:
Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.
Resumo:
Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.
Resumo:
We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g-1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g -1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene.