126 resultados para affective computing
Resumo:
In the reinsurance market, the risks natural catastrophes pose to portfolios of properties must be quantified, so that they can be priced, and insurance offered. The analysis of such risks at a portfolio level requires a simulation of up to 800 000 trials with an average of 1000 catastrophic events per trial. This is sufficient to capture risk for a global multi-peril reinsurance portfolio covering a range of perils including earthquake, hurricane, tornado, hail, severe thunderstorm, wind storm, storm surge and riverine flooding, and wildfire. Such simulations are both computation and data intensive, making the application of high-performance computing techniques desirable.
In this paper, we explore the design and implementation of portfolio risk analysis on both multi-core and many-core computing platforms. Given a portfolio of property catastrophe insurance treaties, key risk measures, such as probable maximum loss, are computed by taking both primary and secondary uncertainties into account. Primary uncertainty is associated with whether or not an event occurs in a simulated year, while secondary uncertainty captures the uncertainty in the level of loss due to the use of simplified physical models and limitations in the available data. A combination of fast lookup structures, multi-threading and careful hand tuning of numerical operations is required to achieve good performance. Experimental results are reported for multi-core processors and systems using NVIDIA graphics processing unit and Intel Phi many-core accelerators.
Resumo:
Approximate execution is a viable technique for environments with energy constraints, provided that applications are given the mechanisms to produce outputs of the highest possible quality within the available energy budget. This paper introduces a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows developers to structure the computation in different tasks, and to express the relative importance of these tasks for the quality of the end result. For non-significant tasks, the developer can also supply less costly, approximate versions. The target energy consumption for a given execution is specified when the application is launched. A significance-aware runtime system employs an application-specific analytical energy model to decide how many cores to use for the execution, the operating frequency for these cores, as well as the degree of task approximation, so as to maximize the quality of the output while meeting the user-specified energy constraints. Evaluation on a dual-socket 16-core Intel platform using 9 benchmark kernels shows that the proposed framework picks the optimal configuration with high accuracy. Also, a comparison with loop perforation (a well-known compile-time approximation technique), shows that the proposed framework results in significantly higher quality for the same energy budget.
Resumo:
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.
Resumo:
The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.
Resumo:
Partially ordered preferences generally lead to choices that do not abide by standard expected utility guidelines; often such preferences are revealed by imprecision in probability values. We investigate five criteria for strategy selection in decision trees with imprecision in probabilities: “extensive” Γ-maximin and Γ-maximax, interval dominance, maximality and E-admissibility. We present algorithms that generate strategies for all these criteria; our main contribution is an algorithm for Eadmissibility that runs over admissible strategies rather than over sets of probability distributions.