136 resultados para Zwingli, Ulrich, 1484-1531.
Resumo:
The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM) is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected-24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012-2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported.
Resumo:
This review paper discusses the use of Tellus and Tellus Border soil and stream geochemistry data to investigate the relationship between medical data and naturally occurring background levels of potentially toxic elements (PTEs) such as heavy metals in soils and water. The research hypothesis is that long-term low level oral exposure of PTEs via soil and water may result in cumulative exposures that may act as risk factors for progressive diseases including cancer and chronic kidney disease. A number of public policy implications for regional human health risk assessments, public health policy and education are also explored alongside the argument for better integration of multiple data sets to enhance ongoing medical and social research. This work presents a partnership between the School of Geography, Archaeology and Palaeoecology, Northern Ireland Cancer Registry, Queen’s University Belfast, and the nephrology (kidney medicine) research group.
Resumo:
Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.
Resumo:
Investigative Ophthalmology & Visual Science Volume 56 Issue 7 Pages 3760-3760
Resumo:
A substantial proportion of aetiological risks for many cancers and chronic diseases remain unexplained. Using geochemical soil and stream water samples collected as part of the Tellus Project studies, current research is investigating naturally occurring background levels of potentially toxic elements (PTEs) in soils and stream sediments and their possible relationship with progressive chronic kidney disease (CKD). The Tellus geological mapping project, Geological Survey Northern Ireland, collected soil sediment and stream water samples on a grid of one sample site every 2 km2 across the rural areas of Northern Ireland resulting in an excess of 6800 soil sampling locations and more than 5800 locations for stream water sampling. Accumulation of several PTEs including arsenic, cadmium, chromium, lead and mercury have been linked with human health and implicated in renal function decline. The hypothesis is that long-term exposure will result in cumulative exposure to PTEs and act as risk factor(s) for cancer and diabetes related CKD and its progression. The ‘bioavailable’ fraction of total PTE soil concentration depends on the ‘bioaccessible’ proportion through an exposure pathway. Recent work has explored this bioaccessible fraction for a range of PTEs across Northern Ireland. In this study the compositional nature of the multivariate geochemical PTE variables and bioaccessible data is explored to augment the investigation into the potential relationship between PTEs, bioaccessibility and disease data.
Resumo:
This note announces the discovery of a tract on eclipse prediction in Paris, BnF, lat. 6400b, composed by an Irish scholar in ad 754. It is the earliest such text in the early middle ages and it is here placed in its scientific context.
Resumo:
Over the past few decades, the early medieval Easter controversy has increasingly been portrayed as a conflict between the ‘Celtic’ and the ‘Roman’ churches, limiting the geographical extent of this most vibrant debate to Britain and Ireland (with the exception of the disputes caused by Columbanus’ appearance on the Continent). Both are not the case. Before c.AD 800, there was no unanimity within the ‘Roman’ cause. Two ‘Roman’ Easter reckonings existed, which could not be reconciled, one invented by Victorius of Aquitaine in AD 457, the other being the Alexandrian system as translated into Latin by Dionysius Exiguus in AD 525. The conflict between followers of Victorius and adherents of Dionysius occurred in Visigothic Spain first, reached Ireland in the second half of the 7th century, and finally dominated the intellectual debate in Francia in the 8th century. This article will focus on the Irish dimension of this controversy. It is argued that the southern Irish clergy introduced the Victorian reckoning in the AD 630s and strictly adhered to that system until the end of the 7th century. When Adomnan, the abbot of Iona, converted to Dionysius in the late AD 680s and convinced most of the northern Irish churches to follow his example, this caused considerable tension with southern Irish followers of Victorius, as is impressively witnessed by the computistical literature of the time, especially the texts produced in AD 689. From this literature, the issues debated at the time are reconstructed. This analysis has serious consequences for how we read Irish history towards the end of the 7th century; rather than bringing the formerly ‘Celtic’ northern Irish clergy in line with southern Irish ‘Roman’ practise, Adomnan added a new dimension to the conflict.
Resumo:
Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42–197 mm/yr in the subsoil and soil/bedrock interface, which represent 4–19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.
Resumo:
Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.
Resumo:
The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.