208 resultados para Wakefield, DIck
Resumo:
A comprehensive study of the Debye-Huckel repulsive and ion wakefield induced attractive potentials around a dust grain is presented, including ion flow. It is found that the modified interaction potential (especially the attractive wakefield force) can cause instability of linear dust oscillations propagating in a dusty plasma crystal composed of dust grains in a horizontal arrangement suspended in the sheath region near a conducting wall (electrode). The dependence of dust lattice modes on the ion flow is studied, revealing instability of dust lattice modes for certain values of the ion flow speed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The experimental study of the behavior of deuterium plasma with densities between 2 X 1018 and 2 x 10(20) cm(-3), subjected to a 6 TW, 30 ps, 3 X 10(18) W cm(-2) laser pulse, is presented Conclusive experimental proof that a single straight channel is generated when the laser pulse interacts with the lowest densities is provided This channel shows no small-scale longitudinal density modulations, extends up to 2 mm in length and persists for up to 150 ps after the peak of the interaction Bifurcation of the channel after 1 mm propagation distance is observed for the first time For higher density interactions, above the relativistic self-focusing threshold, bubblelike structures are observed to form at late times These observations have implications for both laser wakefield accelerators and fast ignition inertial fusion studies (C) 2010 American Institute of Physics [doi 10 1063/1 3505305]
Resumo:
The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)
Resumo:
Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.