131 resultados para Video-camera
Resumo:
Video Capture of university lectures enables learners to be more flexible in their learning behaviour, for instance choosing to attend lectures in person or watch later. However attendance at lectures has been linked to academic success and is of concern for faculty staff contemplating the introduction of Video Lecture Capture. This research study was devised to assess the impact on learning of recording lectures in computer programming courses. The study also considered behavioural trends and attitudes of the students watching recorded lectures, such as when, where, frequency, duration and viewing devices used. The findings suggest there is no detrimental effect on attendance at lectures with video materials being used to support continual and reinforced learning with most access occurring at assessment periods. The analysis of the viewing behaviours provides a rich and accessible data source that could be potentially leveraged to improve lecture quality and enhance lecturer and learning performance.
Resumo:
19.Wang, Y, O’Neill, M, Kurugollu, F, Partial Encryption by Randomized Zig-Zag Scanning for Video Encoding, IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, May 2013
Resumo:
This paper presents a new framework for multi-subject event inference in surveillance video, where measurements produced by low-level vision analytics usually are noisy, incomplete or incorrect. Our goal is to infer the composite events undertaken by each subject from noise observations. To achieve this, we consider the temporal characteristics of event relations and propose a method to correctly associate the detected events with individual subjects. The Dempster–Shafer (DS) theory of belief functions is used to infer events of interest from the results of our vision analytics and to measure conflicts occurring during the event association. Our system is evaluated against a number of videos that present passenger behaviours on a public transport platform namely buses at different levels of complexity. The experimental results demonstrate that by reasoning with spatio-temporal correlations, the proposed method achieves a satisfying performance when associating atomic events and recognising composite events involving multiple subjects in dynamic environments.
Resumo:
The starfish, Asterias rubens, preys on mussels (Mytilus edulis), which are relaid during benthic cultivation processes. Starfish mops, a modified dredge used to remove starfish from mussel cultivation beds, are used in several fisheries today but few studies have attempted to quantify the effectiveness of this method in removing starfish. This study tested the effectiveness of starfish mopping to reduce starfish numbers on mussel beds in Belfast Lough, Northern Ireland. Video surveys to determine starfish densities on mussel beds were conducted between October 2013 and December 2014 using a GoPro™ camera attached to starfish mops. This allowed us to firstly test whether starfish density varied among mussel beds and to investigate how fluctuations in starfish numbers may vary in relationship to starfish ecology. We then estimated the efficiency of mops at removing starfish from mussel beds by comparing densities of starfish on beds, as determined using video footage, with densities removed by mops. Starfish abundance was similar among different mussel beds during this study. The efficiency of mops at removing estimated starfish aggregations varied among mussel beds (4–78%) and the mean reduction in starfish abundance was 27% (± SE 3.2). The effectiveness of mops at reducing starfish abundance was shown to decline as the initial density of starfish on mussel beds increased. It can be recommended that the exact deployment technique of mops on mussel beds should vary depending on the density of starfish locally. The area of mussel bed covered by mops during a tow, for example, should be less when starfish densities are high, to maintain efficiencies throughout the full length of tows and to optimise the removal of starfish from mussel beds. This strategy, by reducing abundance of a major predator, could assist in reducing losses in the mussel cultivation industry.
Resumo:
High Efficiency Video Coding (HEVC) is the most recent video codec coming after currently most popular H.264/MPEG4 codecs and has promising compression capabilities. It is conjectured that it will be a substitute for current video compression standards. However, to the best knowledge of the authors, none of the current video steganalysis methods designed or tested with HEVC video. In this paper, pixel domain steganography applied on HEVC video is targeted for the first time. Also, its the first paper that employs accordion unfolding transformation, which merges temporal and spatial correlation, in pixel domain video steganalysis. With help of the transformation, temporal correlation is incorporated into the system. Its demonstrated for three different feature sets that integrating temporal dependency substantially increased the detection accuracy.
Resumo:
Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km2. Spatial patterns of invasive and native densities between the invader’s core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.
Resumo:
Summary
Background
The ability to carry out a neurological examination and make an appropriate differential diagnosis is one of the mainstays of our final Bachelor of Medicine (MB) exam; however, with the introduction of objective structured clinical examinations (OSCEs) it has become impossible to arrange for adequate numbers of suitable real patients to participate in the exam.
Context
It is vital that newly qualified doctors can perform a basic neurological examination, interpret the physical signs and formulate a differential diagnosis.
It is vital that newly qualified doctors can perform a basic neurological examination
Innovation
Since 2010 we have introduced an objective structured video examination (OSVE) of a neurological examination of a real patient as part of our final MB OSCE exam. The students view clips of parts of the examination process. They answer questions on the signs that are demonstrated and formulate a differential diagnosis.
Implications
This type of station is logistically a lot easier to organise than a large number of real patients at different examination sites. The featured patients have clearly demonstrated signs and, as every student sees the same patient, are perfectly standardised. It is highly acceptable to examiners and performed well as an assessment tool. There are, however, certain drawbacks in that we are not examining the student's examination technique or their interaction with the patient. Also, certain signs, in particular the assessment of muscle tone and power, are more difficult for a student to estimate in this situation
Resumo:
Studies have been carried out to recognize individuals from a frontal view using their gait patterns. In previous work, gait sequences were captured using either single or stereo RGB camera systems or the Kinect 1.0 camera system. In this research, we used a new frontal view gait recognition method using a laser based Time of Flight (ToF) camera. In addition to the new gait data set, other contributions include enhancement of the silhouette segmentation, gait cycle estimation and gait image representations. We propose four new gait image representations namely Gait Depth Energy Image (GDE), Partial GDE (PGDE), Discrete Cosine Transform GDE (DGDE) and Partial DGDE (PDGDE). The experimental results show that all the proposed gait image representations produce better accuracy than the previous methods. In addition, we have also developed Fusion GDEs (FGDEs) which achieve better overall accuracy and outperform the previous methods.
Resumo:
In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.
https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.