216 resultados para Vascular smooth muscle cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe this spontaneous activity and its modification by agents associated with parasympathetic and sympathetic nerve activity. A section of the rabbit small intestine is suspended in an organ bath, and the use of a pressure transducer and data-acquisition software allows the measurement of tension generated by the smooth muscle of intestinal walls. The application of the parasympathetic neurotransmitter ACh at varying concentrations allows students to observe an increase in intestinal smooth muscle tone with increasing concentrations of this muscarinic receptor agonist. Construction of a concentration-effect curve allows students to calculate an EC50 value for ACh and consider some basic concepts surrounding receptor occupancy and activation. Application of the hormone epinephrine to the precontracted intestine allows students to observe the inhibitory effects associated with sympathetic nerve activation. Introduction of the drug atropine to the preparation before a maximal concentration of ACh is applied allows students to observe the inhibitory effect of a competitive antagonist on the physiological response to a receptor agonist. The final experiment involves the observation of the depolarizing effect of K+ on smooth muscle. Students are also invited to consider why the drugs atropine, codeine, loperamide, and botulinum toxin have medicinal uses in the management of gastrointestinal problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of