130 resultados para UNIT-ROOT HYPOTHESIS
Resumo:
Aim: Chloral hydrate is generally considered a safe and effective single dosing procedural sedative for neonates in the clinical setting. However, its safety profile as a repetitive dosing maintenance sedative is largely unknown. This study aimed to document current administration practices of chloral hydrate in the Neonatal Unit, Royal Children's Hospital, Melbourne, Australia, over a 6-month period.
Methods: Patients who had been prescribed chloral hydrate during the specified audit period were recruited into the study and prospectively followed for a period of 28 days, or until they were discharged from the unit. Demographic data were collected on recruitment, and daily documentation of chloral hydrate administration was recorded.
Results: A total of 238 doses of chloral hydrate were administered to a cohort of 32 patients during the study period. The majority of the audited doses (84%) were ordered as repeating doses. Doses were more likely to be given at night than during the day, and the median dosage for repetitive dosing was found to be above the study site's recommended dosing range. Pre-dose and/or post-dose assessment of distress/agitation accompanied dosage approximately half of the time. The audit did not reveal any recognisable pattern of sedation maintenance or weaning process for patients who received multiple doses.
Conclusions: Health-care professionals caring for hospitalised infants should be made aware of the potential risks of chloral hydrate as a repetitive dosing sedative, and of the importance of systematically evaluating the appropriateness and effectiveness of utilising such pharmacological intervention for managing and treating distress.
Resumo:
Pain management in premature and sick babies has long been recognised as a vital component of neonatal care; however practices pertaining to pain assessment and administration of analgesia remain variable in Neonatal Units (NNU). Sucrose has been identified as an effective agent in reducing pain during minor painful procedures in premature babies but the uptake has been modest.This article is the first of two, and will describe the rationale for implementation of sucrose administration as a measure for pain relief for minor procedures in one neonatal unit in Northern Ireland. Current literature relating to use of sucrose willbe utilised in generating debate and discussion around the implementation of Clinical Practice Guidelines (CPG) for Sucrose use.
Resumo:
Loss-of-mains protection is an important component of the protection systems of embedded generation. The role of loss-of-mains is to disconnect the embedded generator from the utility grid in the event that connection to utility dispatched generation is lost. This is necessary for a number of reasons, including the safety of personnel during fault restoration and the protection of plant against out-of-synchronism reclosure to the mains supply. The incumbent methods of loss-of-mains protection were designed when the installed capacity of embedded generation was low, and known problems with nuisance tripping of the devices were considered acceptable because of the insignificant consequence to system operation. With the dramatic increase in the installed capacity of embedded generation over the last decade, the limitations of current islanding detection methods are no longer acceptable. This study describes a new method of loss-of-mains protection based on phasor measurement unit (PMU) technology, specifically using a low cost PMU device of the authors' design which has been developed for distribution network applications. The proposed method addresses the limitations of the incumbent methods, providing a solution that is free of nuisance tripping and has a zero non-detection zone. This system has been tested experimentally and is shown to be practical, feasible and effective. Threshold settings for the new method are recommended based on data acquired from both the Great Britain and Ireland power systems.
Resumo:
In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.
Resumo:
Summary
1.While plant–fungal interactions are important determinants of plant community assembly and ecosystem functioning, the processes underlying fungal community composition are poorly understood.
2.Here, we studied for the first time the root-associated eumycotan communities in a set of co-occurring plant species of varying relatedness in a species-rich, semi-arid grassland in Germany. The study system provides an opportunity to evaluate the importance of host plants and gradients in soil type and landscape structure as drivers of fungal community structure on a relevant spatial scale. We used 454 pyrosequencing of the fungal internal transcribed spacer region to analyse root-associated eumycotan communities of 25 species within the Asteraceae, which were sampled at different locations within a soil type gradient. We partitioned the variance accounted for by three predictors (host plant phylogeny, spatial distribution and soil type) to quantify their relative roles in determining fungal community composition and used null model analyses to determine whether community composition was influenced by biotic interactions among the fungi.
3.We found a high fungal diversity (156 816 sequences clustered in 1100 operational taxonomic units (OTUs)). Most OTUs belonged to the phylum Ascomycota (35.8%); the most abundant phylotype best-matched Phialophora mustea. Basidiomycota were represented by 18.3%, with Sebacina as most abundant genus. The three predictors explained 30% of variation in the community structure of root-associated fungi, with host plant phylogeny being the most important variance component. Null model analysis suggested that many fungal taxa co-occurred less often than expected by chance, which demonstrates spatial segregation and indicates that negative interactions may prevail in the assembly of fungal communities.
4.Synthesis. The results show that the phylogenetic relationship of host plants is the most important predictor of root-associated fungal community assembly, indicating that fungal colonization of host plants might be facilitated by certain plant traits that may be shared among closely related plant species.
Resumo:
In 2009, the Royal Victoria Hospital, Belfast, established a nine-bed, short-stay unit in its emergency department. This article explains the rationale for the model of care delivery adopted, and the importance of developing and working with integrated care pathways. It also discusses four areas essential to the effective running of the unit: interdisciplinary collaboration, training for clinical nurse leaders, management of change and leadership.