381 resultados para TARGETED DELIVERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The inclusion 01 chemical penetration enhancers in a novel patch-based system for the delivery of 5-aminolevulinic acid (ALA) was examined in vitro and in vivo. Poor penetration of ALA has been implicated as the primary factor for low response rates achieved with topical ALA-based photodynamic therapy of thicker neoplastic lesions. such as nodular basal cell carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3 x 3 x 2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (XI), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24 h (Q(24)), mucoadhesive force (F-max) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p > 0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F-max values for freeze-dried tablets were significantly different (2-4 times greater, p > 0.05, two-sided paired t-test) compared to equivalent gets. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionising radiation plays a key role in therapy due to its ability to directly induce DNA damage, in particular DNA double-strand breaks leading to cell death. Cells have multiple repair pathways which attempt to maintain genomic stability. DNA repair proteins have become key targets for therapy, using small molecule inhibitors, in combination with radiation and or chemotherapeutic agents as a means of enhancing cell killing. Significant advances in our understanding of the response of cells to radiation exposures has come from the observation of non-targeted effects where cells respond via mechanisms other than those which are a direct consequence of energy-dependent DNA damage. Typical of these is bystander signalling where cells respond to the fact that their neighbours have been irradiated. Bystander cells show a DNA damage response which is distinct from directly irradiated cells. In bystander cells, ATM- and Rad3-related (ATR) protein kinase-dependent signalling in response to stalled replication forks is an early event in the DNA damage response. The ATM protein kinase is activated downstream of ATR in bystander cells. This offers the potential for differential approaches for the modulation of bystander and direct effects with repair inhibitors which may impact on the response of tumours and on the protection of normal tissues during radiotherapy. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.