169 resultados para Surfaces and Interfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new photocatalyst indicator ink based on methylene blue (MB) is described that allows the presence and activity of a thin (15 nm) photocatalytic film to be assessed in seconds. The ink is very stable (shelf life > 6 months) and the color change (blue to colorless) striking. The ink utilizes a sacrificial electron donor, glycerol, to trap the photogenerated holes, leaving the photogenerated electrons to react with MB to produce its. reduced, leuco, form (LMB). The efficacy of the MB ink is due to the presence of acid in its formulation, which curtails significantly. the otherwise usual, rapid reoxidation of LMB by ambient O-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a combined magneto-optical trap and imaging system that is suitable for the investigation of cold atoms near surfaces. In particular, we are able to trap atoms close to optically scattering surfaces and to image them with an excellent signal-to-noise ratio. We also demonstrate a simple magneto-optical atom cloud launching method. We anticipate that this system will be useful for a range of experimental studies of novel atom-surface interactions and atom trap miniaturization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density-functional theory (DFT) is used to examine the basal and prism surfaces of ice Ih. Similar surface energies are obtained for the two surfaces; however, in each case a strong dependence of the surface energy on surface proton order is identified. This dependence, which can be as much as 50% of the absolute surface energy, is significantly larger than the bulk dependence (< 1%) on proton order, suggesting that the thermodynamic ground state of the ice surface will remain proton ordered well above the bulk order-disorder temperature of about 72 K. On the basal surface this suggestion is supported by Monte Carlo simulations with an empirical potential and solution of a 2D Ising model with nearest neighbor interactions taken from DFT. Order parameters that define the surface energy of each surface in terms of nearest neighbor interactions between dangling OH bonds (those which point out of the surface into vacuum) have been identified and are discussed. Overall, these results suggest that proton order-disorder effects have a profound impact on the stability of ice surfaces and will most likely have an effect on ice surface reactivity as well as ice crystal growth and morphology. S Supplementary data are available from stacks.iop.org/JPhysCM/22/074209/mmedia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced TiO2 (110) surfaces usually have OH groups as a result of H2O dissociation at oxygen vacancy defects. Because of excess electrons due to OH adsorption, OH/TiO2. exhibit interesting properties favorable to further O-2 or H2O adsorption. Both O-2 and H2O can adsorb and easily diffuse on the OH/TiO2 surface; such behavior plays a significant role in photocatalysis, heterogeneous catalysis, electronic devices and sensors. Indeed, the processes of H2O dissociation, O-2 and H2O diffusion on Such TiO2 surfaces, in the presence of OH groups, are important issues in their own right. Herein, the most recent experimental and theoretical progresses in understanding the interactions between adsorbed OH groups and O-2, or H2O, over TiO2 (110) surfaces and their implications will be reviewed. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of an acid violet 7 (AV7) smart ink to assess the activity of photocatalytic paint is demonstrated. A linear correlation is established between the change in oxidized dye concentration, as measured by diffuse reflectance, and the change in the green component of the RGB color values, obtained using a portable hand-held scanner, suggesting that such tests can be monitored easily using an inexpensive piece of hand-held office equipment, as opposed to an expensive lab-based instrument, such as a diffuse reflectance UV/vis spectrophotometer. The bleaching of the AV7 follows first order kinetics, at a rate that is linearly dependent upon the UVA irradiance (0.30–3.26 mW cm–2). A comparison of relative rate of bleaching of the AV7 ink with the relative rate of removal of NOx, as determined using the ISO test (ISO 22197-1:2007), established a linear relationship between the two sets of results and the relevance of this correlation is discussed briefly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using first principles electronic structure methods, we calculate the effects of boron impurities in bulk copper and at surfaces and grain boundaries. We find that boron segregation to the Sigma5(310)[001] grain boundary should strengthen the boundary up to 1.5 ML coverage (15.24 at./nm2). The maximal effect is observed at 0.5 ML and corresponds to boron atoms filling exclusively grain boundary interstices. In copper bulk, B causes significant distortion both in interstitial and regular lattice sites, for which boron atoms are either too big or too small. The distortion is compensated to a large extent when the interstitial and substitutional boron combine together to form a strongly bound dumbbell. Our prediction is that bound boron impurities should appear in a sizable proportion if not dominate in most experimental conditions. A large discrepancy between calculated heats of solution and experimental terminal solubility of B in Cu is found, indicating either a significant failure of the density functional approach or, more likely, strongly overestimated solubility limits in the existing B-Cu phase diagram.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The range of applications for plasmas in liquids, plasmas in contact with liquid surfaces and plasmas containing liquid drops is growing rapidly across a range of technologies. Here the focus is on plasmas where the electrodes are immersed in liquids and their applications in nanoscience. The physical phenomena in both high voltage (tens of kilovolts) and low voltage (a few hundred volts) plasmas in liquid are described together with a discussion of the plasma-induced chemistry. Studies show that in water the plasmas are formed in water vapour created by Joule heating as either channels in the liquid or as layers on the electrodes. The chemistry in these water vapour plasmas and at their interface with the liquid is discussed in the context of the highly reactive radicals produced, such as H and OH. The current use of a variety of plasmas-in-liquid systems in the area of nanoscience is discussed, with an emphasis on nanoparticle growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.



Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The energetics of the low-temperature adsorption and decomposition of nitrous oxide, N(2)O, on flat and stepped platinum surfaces were calculated using density-functional theory (DFT). The results show that the preferred adsorption site for N(2)O is an atop site, bound upright via the terminal nitrogen. The molecule is only weakly chemisorbed to the platinum surface. The decomposition barriers on flat (I 11) surfaces and stepped (211) surfaces are similar. While the barrier for N(2)O dissociation is relatively small, the surface rapidly becomes poisoned by adsorbed oxygen. These findings are supported by experimental results of pulsed N(2)O decomposition with 5% Pt/SiO(2) and bismuth-modified Pt/C catalysts. At low temperature, decomposition occurs but self-poisoning by O((ads)) prevents further decomposition. At higher temperatures some desorption Of O(2) is observed, allowing continued catalytic activity. The study with bismuth-modified Pt/C catalysts showed that, although the activation barriers calculated for both terraces and steps were similar, the actual rate was different for the two surfaces. Steps were found experimentally to be more active than terraces and this is attributed to differences in the preexponential term. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within-slide cores are either: a) erosional features that developed after the occurrence of the landslide in which case the hiatus surface age provides a minimum age for landslide occurrence or b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding in which case the post-hiatus sediment dates indicates approximately when landsliding occurred. In either case, it is reasonable to suggest that these two spatially adjacent slides occurred penecontemporaneously approximately 20,000 years ago.