203 resultados para Stars: early type
Resumo:
Early meningococcal disease (MD) diagnosis is difficult. We assessed rapid molecular testing of respiratory specimens. We performed genotyping of respiratory swabs, blood, and cerebrospinal fluid from children with suspected disease and nasal swabs (NSs) from matched controls. Thirty-nine of 104 suspected cases had confirmed disease. Four controls were carriers. Throat swab ctrA and porA testing for detection of disease gave a sensitivity of 81% (17/21), specificity of 100% (44/44), positive predictive value (PPV) of 100% (17/17), negative predictive value (NPV) of 92% (44/48), and relative risk of 12. NS ctrA and porA testing gave a sensitivity of 51% (20/39), specificity of 95% (62/65), PPV of 87% (20/23), NPV of 77% (62/81), and relative risk of 4. Including only the 86 NSs taken within 48 h of presentation, the results were sensitivity of 60% (18/30), specificity of 96% (54/56), PPV of 90% (18/20), NPV of 82% (54/66), and relative risk of 5. Swab type agreement was excellent (kappa 0.80, P
Resumo:
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.
Resumo:
We present early-time optical and near-infrared photometry of supernova (SN) 2005cf. The observations, spanning a period from about 12 d before to 3 months after maximum, have been obtained through the coordination of observational efforts of various nodes of the European Supernova Collaboration and including data obtained at the 2-m Himalayan Chandra Telescope. From the observed light curve we deduce that SN 2005cf is a fairly typical SN Ia with a post-maximum decline [Delta m(15)(B)(true) = 1.12] close to the average value and a normal luminosity of M-B,M-max = -19.39 +/- 0.33. Models of the bolometric light curve suggest a synthesized Ni-56 mass of about 0.7 M-circle dot. The negligible host galaxy interstellar extinction and its proximity make SN 2005cf a good Type Ia SN template.
Resumo:
Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.
Resumo:
The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only
Resumo:
We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L sun = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M sun. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Ha emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.
Resumo:
An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He i 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Ha P-Cygni profile, the absorption component of which has a width of 128 km s-1. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 Msun, 0.84 ± 0.03 Rsun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 MJup and 1.15 ± 0.05 RJup, respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJDUTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'HK = -4.67) and rotational period (Prot = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (?* = 1.48 ± 0.10 ?sun, Teff = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84-31+6 deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88
Resumo:
We present photometric and spectroscopic data of the peculiar SN 2005la, an object which shows an optical light curve with some luminosity fluctuations and spectra with comparably strong narrow hydrogen and helium lines, probably of circumstellar nature. The increasing full width at half-maximum velocity of these lines is indicative of an acceleration of the circumstellar material. SN 2005la exhibits hybrid properties, sharing some similarities with both Type IIn supernovae and 2006jc-like (Type Ibn) events. We propose that the progenitor of SN 2005la was a very young Wolf-Rayet (WN-type) star which experienced mass ejection episodes shortly before core collapse.
Resumo:
We report the identification of a source coincident with the position of the nearby Type II-P supernova (SN) 2008bk in high-quality optical and near-infrared preexplosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared preexplosion images is identified to within about +/- 70 and +/- 40 mas, respectively, using postexplosion-band images obtained with the NAOS CONICA adaptive optics system K-s on the VLT. The preexplosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colors and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +/- 1.0 M-circle dot.
Resumo:
We present spectroscopy and photometry of the He-rich supernova (SN) 2008ax. The early-time spectra show prominent P-Cygni H lines, which decrease with time and disappear completely about 2 months after the explosion. In the same period He I lines become the most prominent spectral features. SN 2008ax displays the ordinary spectral evolution of a Type IIb supernova. A stringent pre-discovery limit constrains the time of the shock breakout of SN 2008ax to within only a few hours. Its light curve, which peaks in the B band about 20 d after the explosion, strongly resembles that of other He-rich core-collapse supernovae. The observed evolution of SN 2008ax is consistent with the explosion of a young Wolf-Rayet (of WNL type) star, which had retained a thin, low-mass shell of its original H envelope. The overall characteristics of SN 2008ax are reminiscent of those of SN 1993J, except for a likely smaller H mass. This may account for the findings that the progenitor of SN 2008ax was a WNL star and not a K supergiant as in the case of SN 1993J, that a prominent early-time peak is missing in the light curve of SN 2008ax, and that H alpha is observed at higher velocities in SN 2008ax than in SN 1993J.
Resumo:
The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
Resumo:
Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of
Resumo:
The supernova SN 2001du was discovered in the galaxy NGC 1365 at a distance of 19 +/- 2 Mpc, and is a core-collapse event of Type II-P. Images of this galaxy, of moderate depth, have been taken with the Hubble Space Telescope approximately 6.6 yr before discovery and include the supernova position on the WFPC2 field of view. We have observed the supernova with the WFPC2 to allow accurate differential astrometry of SN 2001du on the pre-explosion frames. As a core-collapse event it is expected that the progenitor was a massive, luminous star. There is a marginal detection (3sigma) of a source close to the supernova position on the pre-discovery V -band frame, but it is not precisely coincident and we do not believe it to be a robust detection of a point source. We conclude that there is no stellar progenitor at the supernova position and derive sensitivity limits of the pre-discovery images that provide an upper mass limit for the progenitor star. We estimate that the progenitor had a mass of less than 15 M-circle dot . We revisit two other nearby Type II-P supernovae that have high-quality pre-explosion images, and refine the upper mass limits for the progenitor stars. Using a new distance determination for SN 1999gi from the expanding photosphere method, we revise the upper mass limit to 12 M-circle dot . We present new HST images of the site of SN 1999em, which validate the use of lower spatial resolution ground-based images in the progenitor studies and use a new Cepheid distance to the galaxy to measure an upper mass limit of 15 M-circle dot for that progenitor. Finally we compile all the direct information available for the progenitors of eight nearby core-collapse supernovae and compare their mass estimates. These are compared with the latest stellar evolutionary models of pre-supernova evolution which have attempted to relate metallicity and mass to the supernovae type. Although this is statistically limited at present, reasonable agreement is already found for the lower-mass events (generally the II-P), but some discrepancies appear at higher masses.