125 resultados para Simulated experiment
Resumo:
High-resolution photoionization measurements of Xe + ions have been performed at the Advanced Light Source in Berkeley, California, USA. The experimental cross sections are compared with results from Dirac-Coulomb R-matrix calculations.
Resumo:
Corrosion fatigue is a fracture process as a consequence of synergistic interactions between the material structure, corrosive environment and cyclic loads/strains. It is difficult to be detected and can cause unexpected failure of engineering components in use. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi wires using bending rotation fatigue (BRF) test coupled with a specifically-designed corrosion cell. The testing medium was Hanks’ solution (simulated body fluid) at 37.5 oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance of sample during the BRF test at different periods of time. Experiments indicate that the laser-welded NiTi wire would be more susceptible to the corrosion fatigue attack than the bare NiTi wire. This study can serve as a benchmark for the product designers and engineers to understand the corrosion fatigue behaviour of the NiTi laser weld joint and determine the fatigue life safety factor for NiTi medical devices/implants involving laser welding in the fabrication process.
Resumo:
The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.