121 resultados para Scatter search
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (4)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (6)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (10)
- Brock University, Canada (13)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (98)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (43)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (72)
- Indian Institute of Science - Bangalore - Índia (74)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (121)
- Queensland University of Technology - ePrints Archive (125)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (17)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (108)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (7)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (5)
Resumo:
Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.