132 resultados para Responsive
Resumo:
Bovine TB (bTB) is endemic in Irish cattle and has eluded eradication despite considerable expenditure, amid debate over the relative roles of badgers and cattle in disease transmission. Using a comprehensive dataset from Northern Ireland (>10,000 km2; 29,513 cattle herds), we investigated interactions between host populations in one of the first large-scale risk factor analyses for new herd breakdowns to combine data on both species. Cattle risk factors (movements, international imports, bTB history, neighbours with bTB) were more strongly associated with herd risk than area-level measures of badger social group density, habitat suitability or persecution (sett disturbance). Highest risks were in areas of high badger social group density and high rates of persecution, potentially representing both responsive persecution of badgers in high cattle risk areas and effects of persecution on cattle bTB risk through badger social group disruption. Average badger persecution was associated with reduced cattle bTB risk (compared with high persecution areas), so persecution may contribute towards sustaining bTB hotspots; findings with important implications for existing and planned disease control programmes.
Resumo:
The efficiency of solar-energy-conversion devices depends on the absorption region and intensity of the photon collectors. Organic chromophores, which have been widely stabilized on inorganic semiconductors for light trapping, are limited by the interface between the chromophore and semiconductor. Herein we report a novel orange zinc germanate (Zn-Ge-O) with a chromophore-like structure, by which the absorption region can be dramatically expanded. Structural characterizations and theoretical calculations together reveal that the origin of visible-light response can be attributed to the unusual metallic Ge-Ge bonds which act in a similar way to organic chromophores. Benefiting from the enhanced light harvest, the orange Zn-Ge-O demonstrates superior capacity for solar-driven hydrogen production.
Resumo:
OBJECTIVE: The efficacy of docetaxel has recently been shown to be increased under hypoxic conditions through the down-regulation of hypoxia-inducible-factor 1α (HIF1A). Overexpression of the hypoxia-responsive gene class III β-tubulin (TUBB3) has been associated with docetaxel resistance in a number of cancer models. We propose that administration of docetaxel to prostate patients has the potential to reduce the hypoxic response through HIF1A down-regulation and that TUBB3 down-regulation participates in sensitivity to docetaxel.
METHODS: The cytotoxic effect of docetaxel was determined in both 22Rv1 and DU145 prostate cancer cell lines and correlated with HIF1A expression levels under aerobic and hypoxic conditions. Hypoxia-induced chemoresistance was investigated in a pair of isogenic docetaxel-resistant PC3 cell lines. Basal and hypoxia-induced TUBB3 gene expression levels were determined and correlated with methylation status at the HIF1A binding site.
RESULTS: Prostate cancer cells were sensitive to docetaxel under both aerobic and hypoxic conditions. Hypoxic cytotoxicity of docetaxel was consistent with a reduction in detected HIF1A levels. Sensitivity correlated with reduced basal and hypoxia-induced HIF1A and TUBB3 expression levels. The TUBB3 HIF1A binding site was hypermethylated in prostate cell lines and tumor specimens, which may exclude transcription factor binding and induction of TUBB3 expression. However, acquired docetaxel resistance was not associated with TUBB3 overexpression.
CONCLUSION: These data suggest that the hypoxic nature of a tumor may have relevance as regard to their response to docetaxel. Further investigation into the nature of this relationship may allow identification of novel targets to improve tumor control in prostate cancer patients.
Resumo:
Hypoxia is an inevitable feature of solid tumors and a common cause of treatment failure. Hypoxia acts as a trigger to genetic instability, apoptosis and possibly metastases. The adaptive response to cellular hypoxia involves the modulation of the synthesis of multiple proteins controlling processes such as glucose homeostasis, angiogenesis, vascular permeability and inflammation. The hypoxia responsive element (HRE) sequences isolated from oxygen-responsive genes have been shown to selectively induce gene expression in response to hypoxia when placed upstream of a promoter. The levels of induced gene expression were dependent on the number of HRE copies and the oxygen tension. Hypoxia-mediated cancer gene therapy strategies may represent a promising mean to significantly improve the efficacy of standard radiation therapy and chemotherapy approaches.
Resumo:
Significant evidence has accumulated indicating that certain genes are induced by ionising radiation. An implication of this observation is that their promoter regions include radiation-responsive sequences. These sequences have been isolated in the promoter of several genes including Erg-1, p21/WAF-1, GADD45alpha and t-PA. The mechanism by which radiation induces gene expression remains unclear but involves putative binding sites for selected transcription factors and/or p53. Consensus CC(A/T)6GG sequences have been localized in the Erg-1 promoter and are referred to as serum response elements or CArG elements. The tandem combination of CArG elements has been shown to improve gene expression levels, with a 9-copy motif conferring maximum inducibility. The response of these genes to ionising radiation appears to follow a sigmoid relationship with time and dose. Therapeutic induction of suicide genes and significant cytotoxicity can be achieved at clinically relevant x-rays doses both in vitro and in vivo but was found to be cell-type dependent. Radiation-inducible gene therapy can be potentially enhanced by exploiting hypoxia through the inclusion of hypoxia-response element motifs in the expression cassette, the use of the anaerobic bacteria or the use of neutron irradiation. These results are encouraging and provide significant evidence that gene therapy targeted to the radiation field is a reasonably attractive therapeutic option and could help overcome hypoxic radioresistant tumors.
Resumo:
This chapter focuses on women’s imprisonment in the context of gendered punishment inflicted by the State. It considers the gender-specific consequences of incarceration for women prisoners and the potential of gender-responsive alternatives to custodial sentences. Following a brief historical overview, it traces the rise and consolidation of women’s incarceration in UK jurisdictions, noting the significance of devolution on the prison systems of Scotland and Northern Ireland. In examining the impact of neo-liberal policies and globalisation on women’s imprisonment, it draws comparisons with other advanced democratic states. Analysing the rationale underpinning the disproportionate rise in women’s incarceration, particularly in the UK and the USA the chapter identifies the persistent tensions between retributivism/ incapacitation and reformism/rehabilitation. Drawing on international research demonstrating the complex needs and vulnerabilities of women and girl prisoners, the chapter reveals the gendered harm experienced within penal regimes and the recent development - and limitations - of official gender-specific policies and practices. The emergence of distinct but related political discourses on ‘risk’ and ‘responsibilisation’ as applied to women in conflict with the law, and their consequent criminalisation, is critiqued in the contexts of structural disadvantage, gender discrimination and institutionalised racism. Within these oppressive dynamics often severe deprivations are inflicted on women’s acts of resistance both inside prison and in their communities post-release, further confining the potential of individual and collective agency. Finally, the chapter proposes fundamental change through establishing women-centred alternatives to prison, alongside policies committed to decarceration, while working towards securing the abolition of women’s imprisonment.
Resumo:
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Resumo:
The non-covalent incorporation of responsive luminescent lanthanide, Ln(iii), complexes with orthogonal outputs from Eu(iii) and Tb(iii) in a gel matrix allows for in situ logic operation with colorimetric outputs. Herein, we report an exemplar system with two inputs ([H(+)] and [F(-)]) within a p(HEMA-co-MMA) polymer organogel acting as a dual-responsive device and identify future potential for such systems.
Resumo:
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Resumo:
PURPOSE OF REVIEW:
Recent studies underscore the importance of angle-closure glaucoma (ACG) as a cause of world blindness. A major contribution in assessing the true impact of this disease has been an article estimating the number of persons with occludable angles, angle closure, and blindness from ACG in China as 28.2 million, 9.1 million, and 1.7 million, respectively. Although these numbers are based on data from Singapore and Mongolia, which may be applied to China only with caution, they emphasize the blinding potential of ACG, which is three times as likely to be associated with blindness as open-angle glaucoma (OAG).
RECENT FINDINGS:
Recent reports in the Chinese literature on ACG prevalence suffer from definitional problems that would appear to lead to systematic overestimates of ACG prevalence and underestimates of OAG prevalence. Nonetheless, data from studies by Chinese investigators further emphasize the strong association between ACG and blindness, with fully 16% of subjects with ACG blind in one report-a far higher proportion than for OAG in China and elsewhere. The importance of topiramate as a cause of secondary angle closure has recently been understood, in part, because of a series of 19 such cases reported by investigators at the Food and Drug Administration.
SUMMARY:
Angle closure in this setting appears to be caused by uveal effusion and anterior rotation of the ciliary body with resultant closure of the angle. The condition is not always responsive to laser iridectomy, and elimination of the causative agent appears to be critical. Ultrasonic biomicroscopy is a potential new diagnostic modality for ACG, allowing the measurement of novel parameters, such as the angle opening distance (AOD) at 500 microm (AOD 500). The efficacy of such parameters in improving screening for ACG can only be established by prospective studies of potentially at-risk eyes. A number of novel treatments for AC and angle closure have recently been proposed, including cataract extraction, paracentesis, and argon laser iridoplasty. As with proposed new diagnostic modalities, the efficacy of these treatments remains to be demonstrated with prospective studies, ideally organized in a controlled, randomized fashion.
Resumo:
Purpose of review: Optimal asthma management includes both the control of asthma symptoms and reducing the risk of future asthma exacerbations. Traditionally, treatment has been adjusted largely on the basis of symptoms and lung function and for many patients, this approach delivers both excellent symptom control and reduced risk. However, the relationship between these two key components of the disease may vary between different asthmatic phenotypes and disease severities and there is increasing recognition of the need for more individualized treatment approaches.
Recent findings: A number of factors which predict exacerbation risk have been identified including demographic and behavioural features and specific inflammatory biomarkers. Type-2 cytokine-driven eosinophilic airways inflammation predisposes to frequent exacerbations and predicts response to corticosteroids, and the usefulness of sputum eosinophilia as both a marker of exacerbation risk and biomarker for adjustment of corticosteroid treatment has been established for some time. However, attempts to develop surrogate markers, which would be more straightforward to deliver in the clinic, have been challenging.
Summary: Some patients with asthma have persistent symptoms in the absence of type-2 cytokine driven-eosinophilic airways inflammation due to noncorticosteroid responsive mechanisms (T2-low disease). Composite biomarker strategies using easily measured surrogate indicators of type-2 inflammation (such as fractional exhaled nitric oxide, blood eosinophil count and serum periostin levels) may predict exacerbation risk better but it is unclear if they can be used to adjust corticosteroid treatment. Biomarkers will be used to target novel biologic treatments but additionally may be used to optimize corticosteroid treatment dose and act as prognostics for exacerbation risk and potentially other important longer term asthma outcomes.
Resumo:
Difficult-to-treat asthma affects up to 20% of patients with asthma and is associated with significant healthcare cost. It is an umbrella term that defines a heterogeneous clinical problem including incorrect diagnosis, comorbid conditions and treatment non-adherence; when these are effectively addressed, good symptom control is frequently achieved. However, in 3–5% of adults with difficult-to-treat asthma, the problem is severe disease that is unresponsive to currently available treatments. Current treatment guidelines advise the ‘stepwise’ increase of corticosteroids, but it is now recognised that many aspects of asthma are not corticosteroid responsive, and that this ‘one size fits all’ approach does not deliver clinical benefit in many patients and can also lead to side effects. The future of management of severe asthma will involve optimisation with currently available treatments, particularly corticosteroids, including addressing non-adherence and defining an ‘optimised’ corticosteroid dose, allied with the use of ‘add-on’ target-specific novel treatments. This review examines the current status of novel treatments and research efforts to identify novel targets in the era of stratified medicines in severe asthma.