175 resultados para Rapid cooling
Resumo:
Sudan dyes have been found to be added to chilli and chilli products for illegal colour enhancement purposes. Due to the possible carcinogenic effect, they are not authorized to be used in food in the European Union or the USA. However, over the last few years, many products imported from Asian and African countries have been reported via the Rapid Alert System for Food and Feed in the European Union to be contaminated with these dyes. In order to provide fast screening method for the detection of Sudan I (SI), which is the most widely abused member of Sudan dyes family, a unique (20 min without sample preparation) direct disequilibrium enzyme-linked immunosorbent assay (ELISA) was developed. The assay was based on polyclonal antibodies highly specific to SI. A novel, simple gel permeation chromatography clean-up method was developed to purify extracts from matrices containing high amounts of fat and natural pigments, without the need for a large dilution of the sample. The assay was validated according to the Commission Decision 2002/657/EC criteria. The detection capability was determined to be 15 ng g(-1) in sauces and 50 ng g(-1) in spices. The recoveries found ranged from 81% to 116% and inter- and intra-assay coefficients of variation from 6% to 20%. The assay was used to screen a range of products (85 samples) collected from different retail sources within and outside the European Union. Three samples were found to contain high amounts (1,649, 722 and 1,461 ng g(-1)) of SI by ELISA. These results were confirmed by liquid chromatography-tandem mass spectrometry method. The innovative procedure allows for the fast, sensitive and high throughput screening of different foodstuffs for the presence of the illegal colorant SI.
Resumo:
Using a ball mill, rapid, atom-economic coupling between adenosine-5'-phosphoromorpholidate and phosphorylated ribose derivatives as their sodium or barium salts was achieved. Facile purification by reversed-phase HPLC enabled product isolation within hours.
Resumo:
Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.
Resumo:
The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.
Resumo:
Recent experiments on rapid neutral-neutral reactions involving the radical CN at low temperature and the neutral C atom at room temperature suggest that atom-neutral and radical-neutral reactions may be generally more rapid at low temperature than hitherto thought. We have included a variety of rapid neutral-neutral reactions in our gas-phase chemical models of quiescent, dense interstellar clouds. We find the calculated abundances of many molecules to be greatly changed from previous values. In particular, the peak 'early-time' abundances of organic molecules are reduced.
Resumo:
Some 8000 images obtained with the Solar Eclipse Coronal Imaging System (SECIS) fast-frame CCD camera instrument located at Lusaka, Zambia, during the total eclipse of 21 June 2001 have been analysed to search for short-period oscillations in intensity that could be a signature of solar coronal heating mechanisms by MHD wave dissipation. Images were taken in white-light and Fe xiv green-line (5303 ) channels over 205 seconds (frame rate 39 s(-1)), approximately the length of eclipse totality at this location, with a pixel size of four arcseconds square. The data are of considerably better quality than those that we obtained during the 11 August 1999 total eclipse (Rudawy et al.: Astron. Astrophys. 416, 1179, 2004), in that the images are much better exposed and enhancements in the drive system of the heliostat used gave a much improved image stability. Classical Fourier and wavelet techniques have been used to analyse the emission at 29 518 locations, of which 10 714 had emission at reasonably high levels, searching for periodic fluctuations with periods in the range 0.1 -aEuro parts per thousand 17 seconds (frequencies 0.06 -aEuro parts per thousand 10 Hz). While a number of possible periodicities were apparent in the wavelet analysis, none of the spatially and time-limited periodicities in the local brightness curves was found to be physically important. This implies that the pervasive Alfv,n wave-like phenomena (Tomczyk et al.: Science 317, 1192, 2007) using polarimetric observations with the Coronal Multi-Channel Polarimeter (CoMP) instrument do not give rise to significant oscillatory intensity fluctuations.
Resumo:
Sensitive and specific enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of two illegal synthetic dyes: Methyl Yellow (MY) and Rhodamine B (RB) in food. Polyclonal antibodies were raised against synthesised immunogens and employed in unique direct disequilibrium ELISAs. The time of the assays was only twenty minutes (five minutes for each incubation step with sample and enzyme conjugate and ten minutes with enzyme substrate). The IC50 for MY was in the range 1.4-4.2 ng mL(-1) and for RB 0.1-0.5 ng mL(-1). A simple sample preparation method was developed for the analysis of a range of sauces. In the case of spices a dispersive solid phase extraction was applied to purify the extracts. The testing of twenty samples took approximately one and a half hours (including sample preparation and analysis). Both assays were validated according to the Commission Decision 2002/657/EC criteria for use in sauces and spices. The detection capability for MY in sauces and spices was determined to be less than 15 ng g(-1) and 50 ng g(-1), respectively and for RB, 10 ng g(-1) for both types of food samples. The precision of the developed assays was determined in a repeatability study. The intra-and inter-assay coefficients of variation were less than 25% for both tests and matrix types. The simplicity and performance of both assays indicate that they will be very reliable screening methods for the detection of the illegal dyes MY and RB in a range of food products.
Resumo:
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDS) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDS were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (FRED), tolfenamic acid (TV), 5-hydroxy flunixin (5-OH-FLU). meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC-MS/MS. Decision limit (CC alpha) values and detection capability (CC beta) values have been established for each compound. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An intelligent ink, previously shown to be capable of rapidly assessing photocatalytic activity, was simply applied via a felt-pen onto a commercially available piece of Activ (TM) self-cleaning glass. The ink, comprising of redox dye resazurin and the sacrificial electron donor glycerol within an aqueous hydroxy ethyl cellulose (HEC) polymer media, was photocatalytically degraded in a two-step process. The key initial stage was the photo-reductive conversion of resazurin to resorufin, whereby a colour change from blue to pink occurred. The latter stage was the subsequent photo-reduction of the resorufin, where a slower change from pink to colourless was seen. Red and green components of red-green-blue colour extracted from flat-bed scanner digital images of resazurin ink coated photocatalytic films at intervals during the photocatalysis reaction were inversely proportional to the changes seen via UV-visible absorption spectroscopy and indicative of reaction kinetics. A 3 x 3 grid of intelligent ink was drawn onto a piece of Activ (TM) and a glass blank. The photocatalysis reaction was monitored solely by flat-bed digital scanning. Red-green-blue values of respective positions on the grid were extracted using a custom-built program entitled RGB Extractor (c). The program was capable of extracting a number of 5 x 5 pixel averages of red-green-blue components simultaneously. Allocation of merely three coordinates allowed for the automatic generation of a grid, with scroll-bars controlling the number of positions to be extracted on the grid formed. No significant change in red and green components for any position on the glass blank was observed; however, the Activ (TM) film displayed a homogenous photo-reduction of the dye, reaching maxima in red and minima in green components in 23 +/- 3 and 14 +/- 2 min, respectively. A compositionally graded N-doped titania film synthesised in house via a combinatorial APCVD reaction was also photocatalytically tested by this method where 247 positions on a 13 x 19 grid were simultaneously analysed. The dramatic variation in photocatalysis observed was rapidly quantified for all positions (2-3 hours) allowing for correlations to be made between thicknesses and N : Ti% compositions attained from Swanepoel and WDX analysis, respectively. N incorporation within this system was found to be detrimental to film activity for the photocatalysis reaction of intelligent ink under 365 nm light.
Resumo:
An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.
Resumo:
An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.