127 resultados para RPA access
Resumo:
Successful root canal treatment requires management of the bacterial infection within the root canal space and protection of residual tooth structure with direct/indirect restorations. Long-term success depends upon prevention of re-infection of the root canal space as well as ensuring favorable distribution of the occlusal forces throughout the residual tooth structure. Appropriate planning and design of the final restoration prior to initiating root canal treatment is paramount in achieving this objective. This article describes simultaneous restorability assessment and access cavity preparation to optimize outcome of both endodontic and prosthodontic treatment of the endodontically involved tooth.
Resumo:
In order to protect user privacy on mobile devices, an event-driven implicit authentication scheme is proposed in this paper. Several methods of utilizing the scheme for recognizing legitimate user behavior are investigated. The investigated methods compute an aggregate score and a threshold in real-time to determine the trust level of the current user using real data derived from user interaction with the device. The proposed scheme is designed to: operate completely in the background, require minimal training period, enable high user recognition rate for implicit authentication, and prompt detection of abnormal activity that can be used to trigger explicitly authenticated access control. In this paper, we investigate threshold computation through standard deviation and EWMA (exponentially weighted moving average) based algorithms. The result of extensive experiments on user data collected over a period of several weeks from an Android phone indicates that our proposed approach is feasible and effective for lightweight real-time implicit authentication on mobile smartphones.
Resumo:
By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.
Resumo:
Evidence correlates physical activity, psychological restoration, and social health to proximity to parks and sites of recreation. The purpose of this study was to identify perceived constraints to park use in low-income communities facing significant health disparities, with access to underutilized parks. We used a series of focus groups with families, teens, and older adults in neighborhoods with similar demographic distribution and access to parks over 125 acres in size. Constraints to park use varied across age groups as well as across social ecological levels, with perceived constraints to individuals, user groups, communities, and society. Policies and interventions aimed at increasing park use must specifically address barriers across social ecological levels to be successful.
Resumo:
The role of the radiation pressure of an intense laser beam in the formation of proton and carbon spectra from thin foils is discussed. The data presented suggests that, in competition with the Target Normal Sheath Acceleration mechanism, the onset of the Light Sail (LS) region of Radiation Pressure Acceleration can be obtained for suitably thin targets at currently available laser intensities,. The spectral features and their scaling with the laser and target parameters are consistent with the scenario of Light Sail (LS) acceleration.