231 resultados para R. Wallace


Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>Background: The effects of subclinical vitamin D deficiency on bone mineral density (BMD) and bone turnover in adolescents, especially in boys, are unclear.</p><p>Objective: We aimed to investigate the relations of different stages of vitamin D status and BMD and bone turnover in a representative sample of adolescent boys and girls.</p><p>Design: BMD was measured by dual-energy X-ray absorptiometry at the nondominant forearm and dominant heel in a random sample of 12- (n = 260) and 15-y-old (n = 239) boys and 12- (n = 266) and 15-y-old (n = 250) girls. Serum 25-hydroxyvitamin D, parathyroid hormone, osteocalcin, and type I collagen cross-linked C-telopeptide were assessed by using enzyme-linked immunoassays. Relations between vitamin D status and bone health indexes were assessed by using regression modeling.</p><p>Results: Using multivariate regression to adjust for potential physical, lifestyle, and dietary confounding factors, we observed that 12-and 15-y-old girls with high vitamin D status (&gt;= 74.1 nmol/L) had significantly greater forearm (but not heel) BMD (beta = 0.018; SE = 0.008; P &lt; 0.05 for each age group) and lower serum parathyroid hormone concentrations and bone turnover markers than did those with low vitamin D status. These associations were evident in subjects sampled throughout the year and in winter only. There was no significant relation between vitamin D status and BMD in boys.</p><p>Conclusions: Maintaining serum 25-hydroxyvitamin D concentrations above approximate to 50 nmol/L throughout the year may be a cost-effective means of improving bone health. Increased emphasis on exploring strategies for improving vitamin D status in adolescents is needed.</p>

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. In<br/>particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390-nm laser light with intensities up to 4 x 10(14) W cm(-2) using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the HELIUM code, finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but models comprising only physical orbitals also produce accurate results.</p>

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.