338 resultados para Primary Resonances
Resumo:
AIMS:
The aim of this study was to use general practice data to estimate the prevalence of diabetic nephropathy within the registered diabetes patients and examine variation in practice prevalence and management performance since introduction of this initiative.
METHODS:
Reported quality indicators from the Northern Ireland General Practice Quality and Outcomes Framework were analysed for diabetes and diabetic nephropathy prevalence and management in the period 2004-2008. Variation in prevalence at practice level was assessed using multiple linear regression adjusting for age, practice size, deprivation and glycaemic control.
RESULTS:
In 2006-2007, 57,454 (4.1%) adult diabetic patients were registered in the denominator population of 1.4 million compared with 51,923 (3.8%) in 2004-2005 (mean practice range 0.5-7.7%). Diabetic nephropathy prevalence was 15.1 and 11.5%, respectively (8688 and 5955 patients). Documented diabetic nephropathy prevalence showed marked variation across practices (range 0-100%) and was significantly negatively correlated with diabetes list size, albumin creatinine ratio testing rates and renin-angiotensin-aldosterone system blockade use and positively correlated with exception reporting rates. Specifically, for every increase in 100 diabetic patients to a register, documented diabetic nephropathy prevalence reduced by 40% (P=0.003). On the positive side, median albumin-creatinine ratio testing rates doubled to 82% compared with figures in the pre-Framework era.
CONCLUSIONS:
Implementation of the Northern Ireland General Practice Quality and Outcomes Framework has positively benefitted testing for diabetic nephropathy and increased numbers of detected patients in a short space of time. Large variation in diabetic nephropathy prevalence remains and is associated with diabetes registry size, screening and treatment practices, suggesting that understanding this variation may help detect and better manage diabetic nephropathy.
Resumo:
We report calculations of double ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two electron time-dependent Schr¨odinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly-ionizing wavepackets from different recollision events populate the same spatial hemisphere.
Resumo:
We discuss the properties of the lifetime or the time-delay matrix Q(E) for multichannel scattering, which is related to the scattering matrix S(E) by Q = i?S(dS†/dE). For two overlapping resonances occurring at energies E with widths G(? = 1, 2), with an energy-independent background, only two eigenvalues of Q(E) are proved to be different from zero and to show typical avoided-crossing behaviour. These eigenvalues are expressible in terms of the four resonance parameters (E , G) and a parameter representing the strength of the interaction of the resonances. An example of the strong and weak interaction in an overlapping double resonance is presented for the positronium negative ion. When more than two resonances overlap (? = 1, ..., N), no simple representation of each eigenvalue has been found. However, the formula for the trace of the Q-matrix leads to the expression d(E) = -?arctan[(G/2)/(E - E)] + d(E) for the eigenphase sum d(E) and the background eigenphase sum d(E), in agreement with the known form of the state density. The formulae presented in this paper are useful in a parameter fitting of overlapping resonances. © 2006 IOP Publishing Ltd.
Resumo:
Background: A transcription regulatory complex (TRC) that includes Ets1, Ets2, PEA3 and ß-catenin/T-cell factors regulates osteopontin (OPN) that is implicated in colorectal cancer (CRC) dissemination. The consistency of OPN transcriptional control between primary CRC and metastases is unclear. This study investigates expression and prognostic significance of the OPN–TRC in primary human CRC and associated colorectal liver metastases (CRLM).
Methods: Osteopontin–TRC factors were assayed by digital microscopy in 38 primary CRCs and matched CRLM specimens and assessed against clinical prognosis.
Results: In primary CRC, OPN expression intensity correlated with that of its co-activators, PEA3 (r=0.600; P<0.01), Ets1 (r=0.552; P<0.01), Ets2 (r=0.521; P<0.01) and had prognostic significance. Osteopontin intensity in primary CRC inversely correlated with the interval between diagnosis and resection of CRLM. Overall OPN intensity was lower in CRLM than primary CRC and correlations with co-activators were weaker, for example, Ets1 (P=0.047), PEA3 (P=0.022) or nonsignificant (Ets2). The ratio of OPN expression in CRLM vs primary CRC had prognostic significance.
Conclusion: This study supports transcriptional control of OPN by known coregulators in both primary and secondary CRC. Weaker associations in CRLM suggest involvement of other unknown factors possibly from the liver microenvironment or resulting from additional genetic or epigenetic changes that drive tumour metastatic capability in OPN transcriptional control.
Targets of genome copy number reduction in primary breast cancers identified by integrative genomics
Resumo:
The identification of specific oncogenes and tumor suppressor genes in regions of recurrent aneuploidy is a major challenge of molecular cancer research. Using both oligonucleotide single-nucleotide polymorphism and mRNA expression arrays, we integrated genomic and transcriptional information to identify and prioritize candidate cancer genes in regions of increased and decreased chromosomal copy number in a cohort of primary breast cancers. Confirming the validity of this approach, several regions of previously-known copy number (CN) alterations in breast cancer could be successfully reidentified. Focusing on regions of decreased CN, we defined a prioritized list of eighteen candidate genes, which included ARPIN, FBNI, and LZTSI, previously shown to be associated with cancers in breast or other tissue types, and novel genes such as P29, MORF4LI, and TBCID5. One such gene, the RUNX3 transcription factor, was selected for further study. We show that RUNX3 is present at reduced CNs in proportion to the rest of the tumor genome and that RUNX3 CN reductions can also be observed in a breast cancer series from a different center. Using tissue microarrays, we demonstrate in an independent cohort of over 120 breast tissues that RUNX3 protein is expressed in normal breast epithelium but not fat and stromal tissue, and widely down-regulated in the majority of breast cancers (> 85%). In vitro, RUNX3 overexpression suppressed the invasive potential of MDA-MB-231 breast cancer cells in a matrigel assay. Our results demonstrate the utility of integrative genomic approaches to identify novel potential cancer-related genes in primary tumors. This article contains Supplementary Material available at http:// www.interscience.wiley.com/jpages/1045-2257/suppmat. (c) 2006 Wiley-Liss, Inc.
Resumo:
Objective: This Study aimed to assess the levels of adherence in a sample of hypertensive patients being cared for in primary care in Northern Ireland and to explore the impact of depressive symptoms and medication beliefs on medication adherence.
Extracting S-matrix poles for resonances from numerical scattering data: Type-II Pade reconstruction
Resumo:
We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Pade approximant from given physical values (Bessis et al. (1994) [421: Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [451) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H-2 -> HE + H, F + HD : HE + D, Cl + HCI CIH + Cl and H + D-2 -> HD + D reactions. Some detailed examples are given in the text.
Resumo:
Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.