168 resultados para Polatsk Region (Belarus)
Resumo:
Privacy region protection in video surveillance systems is an active topic at present. In previous research, a binary mask mechanism has been developed to indicate the privacy region; however this incurs a significant bitrate overhead. In this paper, an adaptive binary mask is proposed to represent the privacy region. In a practical privacy region protection application, in which the privacy region typically occupies less than half of the overall frame and is rectangular or approximately rectangular, the proposed adaptive binary mask can effectively reduce the bitrate overhead. The proposed method can also be easily applied to the FMO mechanism of H.264/AVC, providing both error resilience and a lower bitrate overhead.
Resumo:
Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression.
Resumo:
Hodder, I. and C.A.T. Malone, . Proceedings of the Prehistoric Society
Resumo:
A leading theory hypothesizes that schizophrenia arises from dysregulation of the dopamine system in certain brain regions. As this dysregulation could arise from abnormal expression of D2 dopamine receptors, the D2 receptor gene (DRD2) on chromosome 11q is a candidate locus for schizophrenia. We tested whether allelic variation at DRD2 and five surrounding loci cosegregated with schizophrenia in 112 small- to moderate-size Irish families containing two or more members affected with schizophrenia or schizoaffective disorder, defined by DSM-III-R. Evidence of linkage was assessed using varying definitions of illness and modes of transmission. Assuming genetic homogeneity, linkage between schizophrenia and large regions of 11q around DRD2 could be strongly excluded. Assuming genetic heterogeneity, variation at the DRD2 locus could be rejected as a major risk factor for schizophrenia in more than 50% of these families for all models tested and in as few as 25% of the families for certain models. The DRD2 linkage in fewer than 25% of these families could not be excluded under any of the models tested. Our results suggest that the major component of genetic susceptibility to schizophrenia is not due to allelic variation at the DRD2 locus or other genes in the surrounding chromosomal region.
Resumo:
In our genome scan for schizophrenia genes in 265 Irish pedigrees, marker D5S818 in 5q22 produced the second best result of the first 223 markers tested (P = 0.002). We then tested an additional 13 markers and the evidence suggests the presence of a vulnerability locus for schizophrenia in region 5q22-31. This region appears to be distinct from those chromosome 5 regions studied in two prior reports, but the same as that producing positive results in the report by Wildenauer and colleagues found elsewhere in this issue. The largest pairwise heterogeneity LOD (H-LOD) score was found with marker D5S393 (max 3.04, P = 0.0005), assuming a narrow phenotypic category, and a genetic model with intermediate heterozygotic liability. In marked contrast to the H-LOD scores from our sample with markers from the regions of interest on chromosomes 6p and 8p, expanding the disease definition to include schizophrenia spectrum or nonspectrum disorders produced substantially smaller scores, with a number of markers failing to yield positive values at any recombination fraction. Using multipoint H-LODS, the strongest evidence for linkage occurs under the narrow phenotypic definition and recessive genetic model, with a peak at marker D5S804 (max 3.35, P = 0.0002). Multipoint nonparametric linkage analysis produced a peak in the same location (max z = 2.84, P = 0.002) with the narrow phenotypic definition. This putative vulnerability locus appears to be segregating in 10-25% of the families studied, but this estimate is tentative. Comparison of individual family multipoint H-LOD scores at the regions of interest on chromosomes 6p, 8p and 5q showed that only a minority of families yield high lod scores in two or three regions.
Resumo:
In our genomic scan of 265 Irish families with schizophrenia, we have thus far generated modest evidence for the presence of vulnerability genes in three chromosomal regions, i.e., 5q21-q31, 6p24-p22, and 8p22-p21. Outside of those regions, of all markers tested to date, D10S674 produced one of the highest pairwise heterogeneity lod (H-LOD) scores, 3.2 (P = 0.0004), when initially tested on a subset of 88 families. We then tested a total of 12 markers across a region of 32 centimorgans in region 10p15-p11 of all 265 families. The strongest evidence for linkage occurred assuming an intermediate phenotypic definition, and a recessive genetic model. The largest pairwise H-LOD score was found with marker D10S2443 (maximum 1.95, P = 0.005). Using multipoint H-LODs, we found a broad peak (maximum 1.91, P = 0.006) extending over the 11 centimorgans from marker D10S674 to marker D10S1426. Multipoint nonparametric linkage analysis produced a much broader peak, but with the maximum in the same location near D10S2443 (maximum z = 1.88, P = 0.03). Based on estimates from the multipoint analysis, this putative vulnerability locus appears to be segregating in 5-15% of the families studied, but this estimate should be viewed with caution. When evaluated in the context of our genome scan results, the evidence suggests the possibility of a fourth vulnerability locus for schizophrenia in these Irish families, in region 10p15-p11.
Resumo:
Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.
Resumo:
The interactions of epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) with the epidermal growth factor receptor (EGFR) were examined by insertion mutagenesis of the receptor. Seventeen insertions were made throughout a construct containing only the extracellular domain. This truncated receptor (sEGFR) was secreted and had a dissociation constant similar to that of the full-length solubilized receptor. Receptors with insertions within subdomain III were not secreted. Two receptors with insertions at positions 291 and 474, which border subdomain III, have significantly decreased binding to both EGF and TGF alpha relative to wild type. This confirms previous work demonstrating that subdomain III forms the primary binding site for EGF and TGF alpha. Four of the mutants within subdomain II had a decreased binding to TGF alpha relative to wild type, but had wild type binding to EGF. These results suggest that a region within subdomain II may selectively regulate the binding of TGF alpha. Two receptors which contained insertions within subdomains II and IV, approximately equidistant from the center of subdomain III, bound twofold more ligand molecules than wild type receptor, with an affinity similar to that of wild type receptor. These findings suggest that insertion at these positions allows the access of more than one ligand molecule to the binding site.
Resumo:
This study uses a discrete choice experiment (DCE) to elicit willingness to pay estimates for changes in the water quality of three rivers. As many regions the metropolitan region Berlin-Brandenburg struggles to achieve the objectives of the Water Framework Directive until 2015. A major problem is the high load of nutrients. As the region is part of two states (Länder) and the river sections are common throughout the whole region we account for the spatial context twofold. Firstly, we incorporate the distance between each respondent and all river stretches in all MNL and RPL models, and, secondly, we consider whether respondents reside in the state of Berlin or Brandenburg. The compensating variation (CV) calculated for various scenarios shows that overall people would significantly benefit from improved water quality. The CV measures, however, also reveal that not considering the spatial context would result in severely biased welfare measures. While the distance decay effect lowers CV, state residency is connected to the frequency of status quo choices and not accounting for residency would underestimate possible welfare gains in one state. Another finding is that the extent of the market varies with respect to attributes (river stretches) and attribute levels (water quality levels).
Resumo:
Deficits in sensitivity to visual stimuli of low spatial frequency and high temporal frequency (so-called frequency-doubled gratings) have been demonstrated both in schizophrenia and in autism spectrum disorder (ASD). Such basic perceptual functions are ideal candidates for molecular genetic study, because the underlying neural mechanisms are well characterized; but they have sometimes been overlooked in favor of cognitive and neurophysiological endophenotypes, for which neural substrates are often unknown. Here, we report a genome-wide association study of a basic visual endophenotype associated with psychological disorder. Sensitivity to frequency-doubled gratings was measured in 1060 healthy young adults, and analyzed for association with genotype using linear regression at 642758 single nucleotide polymorphism (SNP) markers. A significant association (P=7.9×10) was found with the SNP marker rs1797052, situated in the 5′-untranslated region of PDZK1; each additional copy of the minor allele was associated with an increase in sensitivity equivalent to more than half a standard deviation. A permutation procedure, which accounts for multiple testing, showed that the association was significant at the α=0.005 level. The region on chromosome 1q21.1 surrounding PDZK1 is an established susceptibility locus both for schizophrenia and for ASD, mirroring the common association of the visual endophenotype with the two disorders. PDZK1 interacts with N-methyl-d-aspartate receptors and neuroligins, which have been implicated in the etiologies of schizophrenia and ASD. These findings suggest that perceptual abnormalities observed in two different disorders may be linked by common genetic elements. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is shown that the former HIS must also be designed to resonate at 9 GHz to avoid the generation of a boresight null that occurs because the structure is physically large enough to support higher-order modes. The improvement that is obtained at each of the three frequencies investigated is shown by comparing the predicted and measured radiation patterns for the free space and HIS-backed antenna.