126 resultados para P2 purinergic receptors
Resumo:
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors
Resumo:
Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.
Resumo:
Background: Protease activated receptors (PAR) belong to a subfamily of G protein coupled receptors. They consist of seven transmembrane domains but are not classical receptors as their agonist is a circulating serine proteinase. This proteinase cleaves an N-terminal extracellular domain of the receptor to reveal a new N-terminal tethered ligand which binds intramolecularly, thus converting an extracellular proteolytic event into a transmembrane signal. Therefore, the cleavage and activation of PARs provide a mechanism whereby proteinases can directly influence the inflammatory response. Gingival hyperplasia or gingival enlargement is a side effect of some drugs such as cyclosporine, a potent immunosuppressant. To date, the potential role of PAR in the inflammation associated with the pathogenesis of gingival overgrowth has not been studied. Objectives: The present study was designed to determine whether proteinases derived from extracts of cyclosporine induced hyperplasia were capable of activating PAR in vitro. Methods: Cell lysates were derived from tissue obtained from gingival overgrowth of patients requiring surgical excision. Cell lines over-expressing PARs were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% foetal calf serum (FCS) in 5% CO2. The cells were treated with gingival overgrowth lysates and agonist stimulated calcium release from the cells was recorded using the Fluo-4-Direct™ Calcium Assay Kit from Invitrogen, according to manufacturer's instructions. Results: Calcium release by activated PAR on tumour cells was detected in those treated with gingival hyperplasia lysates. Samples from healthy gingival fibroblasts did not elicit this response. Conclusions: The identification of mediators of the molecular events central to the inflammatory phenotype elicited by gingival hyperplasia is important. To this end, our experiments show that in vitro, enzymes derived from overgrown gingival tissue are capable of activating PAR and thereby provide evidence for the potential role of PAR in sustaining gingival hyperplasia.
Resumo:
Substance P (SP) is a member of the structurally related family of neuropeptides known as the tachykinins. In addition to neurotransmitter roles, the tachykinins are also known to modulate local inflammation which depends on signalling between the neuropeptide molecules and target cells and tissues. SP mediates its effects through a specific receptor, known as the substance P receptor or the neurokinin 1 (NK-1) receptor. The NK-1 receptor is a G-protein associated integral membrane protein and although it has been studied in a wide range of tissues, to date there has been no published data on the localisation of the NK-1 receptor in human gingival tissue. Objective: The aim of this study was to examine the distribution of the NK-1 receptor in human gingival tissue using immunocytochemistry. Method: Gingival tissue was obtained from patients undergoing periodontal surgery. Tissue was fixed in paraformaldehyde and embedded in wax for sectioning. Sections were dewaxed in xylene and then rehydrated in alcohols and phosphate buffered saline. Rehydrated sections were probed with rabbit polyclonal antibody to human NK-1 receptor which was subsequently detected using anti-rabbit horseradish peroxidase conjugate and diaminobenzidine as substrate. Results: Immunocytochemistry revealed that the NK-1 receptor was distributed along nerve fibres and blood vessel endothelial cells, suggesting these areas are main targets for the actions of SP via the NK-1 receptor. Conclusion: This is the first immunocytochemical report of NK-1 receptors in human gingival tissue and provides evidence for possible NK-1 mediated biological effects of SP in human gingival tissue from periodontitis patients.
Resumo:
Objectives: The inflammatory response to pulpal injury or infection has major clinical significance. The aim of the study is to investigate the presence and regulation of expression of neuropeptide receptors on human pulp fibroblasts and whole pulp tissue. This study will investigate the expression of Substance P (NK-1) and Neuropeptide Y (NPY-Y1) receptors on pulp fibroblasts, determine the effects of Transforming Growth Factor Beta-1 (TGF-b1) and Interleukin 1-Beta (IL-1b) on the expression of NK-1 and NPY-Y1 receptors on pulp fibroblasts and examine the levels of receptor expression in whole pulp samples. Methods: Primary pulp fibroblast cell lines were obtained from patients undergoing extractions for orthodontic reasons. The cells were grown to confluence and stimulated for 5 days with IL-1b or TGF-b1. Pulp tissue fragments were obtained from freshly extracted sound and carious teeth, snap frozen in liquid nitrogen and cracked open using a vice. The monolayer was removed with cell scrapers and pelleted. The cell membranes of the cultured cells and the whole tissue were isolated using a Mem-PER® Eukaryotic Membrane Protein Extraction Reagent Kit (Pierce, UK). The membrane proteins were separated by SDS-PAGE and Western blotting was used to detect the presence of NK-1 and NPY-Y1. Results: Initial results demonstrated the presence of NK-1 and NPY-Y1 in cultured pulp fibroblasts. Following the 5 day incubation with TGF-b1, the cells appeared not to express NK-1. IL-1b had a slight stimulatory effect on NK-1 expression. The NPY-Y1 expression was not affected by either TGF-b1 or IL-1b. In whole pulp samples, levels of NK-1 were increased in carious teeth compared to caries-free teeth. The NPY-Y1 levels were similar in carious and non-carious teeth. Conclusion: These findings give an insight into how pulp cells react to inflammatory stimuli with regards to neuropeptide receptor expression and their roles in health and disease
Resumo:
We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.