140 resultados para Odontoblast-like MDPC-23 cells
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Fe XXV, Co XXVI, Ni XXVII, Cu XXVIII and Zn XXIX. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are listed for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.7 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, for some transitions, are also discussed. Finally, discrepancies between the present results of effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Resumo:
BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.
METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.
RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.
CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Resumo:
Cervical cancer is a multi-stage disease caused by human papillomaviruses (HPV) infection of cervical epithelial cells, but the mechanisms regulating disease progression are not clearly defined. Using 3-dimensional organotypic cultures, we demonstrate that HPV16 E6 and E7 proteins alter the secretome of primary human keratinocytes resulting in local epithelial invasion. Mechanistically, absence of the IGF-binding protein 2 (IGFBP2) caused increases in IGFI/II signalling and through crosstalk with KGF/FGFR2b/AKT, cell invasion. Repression of IGFBP2 is mediated by histone deacetylation at the IGFBP2 promoter and was reversed by treatment with histone deacetylase (HDAC) inhibitors. Our in vitro findings were confirmed in 50 invasive cancers and 79 cervical intra-epithelial neoplastic lesions caused by HPV16 infection, where IGFBP2 levels were reduced with increasing disease severity. In summary, the loss of IGFBP2 is associated with progression of premalignant disease, and sensitises cells to pro-invasive IGF signalling, and together with stromal derived factors promotes epithelial invasion.
Resumo:
BACKGROUND AND PURPOSE: NF-κB-driven inflammation is negatively regulated by the zinc finger protein A20. Gibberellic acid (GA3 ) is a plant-derived diterpenoid with documented anti-inflammatory activity, which is reported to induce A20-like zinc finger proteins in plants. Here, we sought to investigate the anti-inflammatory effect of GA3 in airway epithelial cells and determine if the anti-inflammatory action relates to A20 induction.
EXPERIMENTAL APPROACH: Primary nasal epithelial cells and a human bronchial epithelial cell line (16HBE14o-) were used. Cells were pre-incubated with GA3 , stimulated with Pseudomonas aeruginosa LPS; IL-6 and IL-8 release, A20, NF-κB and IκBα expression were then evaluated. To determine if any observed anti-inflammatory effect occurred via an A20-dependent mechanism, A20 was silenced using siRNA.
KEY RESULTS: Cells pre-incubated with GA3 had significantly increased levels of A20 mRNA (4 h) and protein (24 h), resulting in a significant reduction in IL-6 and IL-8 release. This effect was mediated via reduced IκBα degradation and reduced NF-κB (p65) expression. Furthermore, the anti-inflammatory action of GA3 was abolished in A20-silenced cells.
CONCLUSIONS AND IMPLICATIONS: We showed that A20 induction by GA3 attenuates inflammation in airway epithelial cells, at least in part through its effect on NF-κB and IκBα. GA3 or gibberellin-derived derivatives could potentially be developed into anti-inflammatory drugs for the treatment of chronic inflammatory diseases associated with A20 dysfunction.
Resumo:
In COPD inflammation driven by exposure to tobacco smoke results in impaired innate immunity in the airway and ultimately to lung injury and remodeling. To understand the biological processes involved in host interactions with cigarette derived toxins submerged epithelial cell culture is widely accepted as a model for primary human airway epithelial cell culture research. Primary nasal and bronchial epithelial cells can also be cultured in air-liquid interface (ALI) models. ALI and submerged culture models have their individual merits, and the decision to use either technique should primarily be determined primarily by the research hypothesis.
Cigarette smoke has gaseous and particulate matter, the latter constituent primarily represented in cigarette smoke extract (CSE). Although not ideal in order to facilitate our understanding of the responses of epithelial cells to cigarette smoke, CSE still has scientific merit in airway cell biology research. Using this model, it has been possible to demonstrate differences in levels of tight junction disruption after CSE exposure along with varied vulnerability to the toxic effects of CSE in cell cultures derived from COPD and control study groups.
Primary nasal epithelial cells (PNECs) have been used as an alternative to bronchial epithelial cells (PBECs). However, at least in subjects with COPD, PNECs cannot consistently substitute for PBECs. Although airway epithelial cells from patients with COPD exhibit a constitutional pro-inflammatory phenotype, these cells have a diminished inflammatory response to CSE exposure. COPD epithelial cells have an increased susceptibility to undergo apoptosis, and have reduced levels of Toll-like receptor-4 expression after CSE exposure, both of which may account for the reduced inflammatory response observed in this group.
The use of CSE in both submerged and ALI epithelial cultures has extended our understanding of the cellular mechanisms that are important in COPD, and helped to unravel important pathways which may be of relevance in its pathogenesis.
Resumo:
Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.
Resumo:
BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (ß-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.
Resumo:
PURPOSE: Some members of a novel series of pyrrolo-1,5-benzoxazepines (PBOXs) are microtubule-targeting agents capable of inducing apoptosis in a variety of human cancerous cells, hence, they are currently being developed as potential anti-cancer agents. The purpose of this study was to first characterise the activities of a novel PBOX analogue, PBOX-16 and then investigate the anti-angiogenic potential of both PBOX-16 and its prototype PBOX-6.
METHODS: The effects of PBOX-6 and -16 on cancerous cells (chronic myeloid leukaemia K562 cells and ovarian carcinoma A2780 cells) and primary cultured human umbilical vein endothelial cells (HUVECs) were examined by assessing cell proliferation, microtubular organisation, DNA analysis of cell cycle progression and caspase-3/7 activity. Their anti-angiogenic properties were then investigated by examining their ability to interfere with HUVEC differentiation into capillary-like structures and vascular endothelial growth factor (VEGF)-stimulated HUVEC migration.
RESULTS: PBOX-6 and -16 inhibited proliferation of K562, A2780 and HUVEC cells in a concentration-dependent manner. PBOX-16, confirmed as a novel depolymerising agent, was approximately tenfold more potent than PBOX-6. Inhibition of cell proliferation was mediated by G(2)/M arrest followed by varying degrees of apoptosis depending on the cell type; endothelial cells underwent less apoptosis than either of the cancer cell lines. In addition to the antitumourigenic properties, we also describe a novel antiangiogenic function for PBOXs: treatment with PBOXs inhibited the spontaneous differentiation of HUVECs into capillary-like structures when grown on a basement membrane matrix preparation (Matrigel™) and also significantly reduced VEGF-stimulated HUVEC migration.
CONCLUSION: Dual targeting of both the tumour cells and the host endothelial cells by PBOX compounds might enhance the anti-cancer efficacy of these drugs.
Resumo:
The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.
Resumo:
Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.
Resumo:
The development of decellularised scaffolds for small diameter vascular grafts is hampered by their limited patency, due to the lack of luminal cell coverage by endothelial cells (EC) and to the low tone of the vessel due to absence of a contractile smooth muscle cells (SMC). In this study, we identify a population of vascular progenitor c-Kit+/Sca-1- cells available in large numbers and derived from immuno-privileged embryonic stem cells (ESCs). We also define an efficient and controlled differentiation protocol yielding fully to differentiated ECs and SMCs in sufficient numbers to allow the repopulation of a tissue engineered vascular graft. When seeded ex vivo on a decellularised vessel, c-Kit+/Sca-1-derived cells recapitulated the native vessel structure and upon in vivo implantation in the mouse, markedly reduced neointima formation and mortality, restoring functional vascularisation. We showed that Krüppel-like transcription factor 4 (Klf4) regulates the choice of differentiation pathway of these cells through β-catenin activation and was itself regulated by the canonical Wnt pathway activator lithium chloride. Our data show that ESC-derived c-Kit+/Sca-1-cells can be differentiated through a Klf4/β-catenin dependent pathway and are a suitable source of vascular progenitors for the creation of superior tissue-engineered vessels from decellularised scaffolds.
Resumo:
Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.
Resumo:
Background: Around 10-15% of patients with locally advanced rectal cancer (LARC) undergo a pathologically complete response (TRG4) to neoadjuvant chemoradiotherapy; the rest of patients exhibit a spectrum of tumour regression (TRG1-3). Understanding therapy-related genomic alterations may help us to identify underlying biology or novel targets associated with response that could increase the efficacy of therapy in patients that do not benefit from the current standard of care.
Methods: 48 FFPE rectal cancer biopsies and matched resections were analysed using the WG-DASL HumanHT-12_v4 Beadchip array on the illumina iScan. Bioinformatic analysis was conducted in Partek genomics suite and R studio. Limma and glmnet packages were used to identify genes differentially expressed between tumour regression grades. Validation of microarray results will be carried out using IHC, RNAscope and RT-PCR.
Results: Immune response genes were observed from supervised analysis of the biopsies which may have predictive value. Differential gene expression from the resections as well as pre and post therapy analysis revealed induction of genes in a tumour regression dependent manner. Pathway mapping and Gene Ontology analysis of these genes suggested antigen processing and natural killer mediated cytotoxicity respectively. The natural killer-like gene signature was switched off in non-responders and on in the responders. IHC has confirmed the presence of Natural killer cells through CD56+ staining.
Conclusion: Identification of NK cell genes and CD56+ cells in patients responding to neoadjuvant chemoradiotherapy warrants further investigation into their association with tumour regression grade in LARC. NK cells are known to lyse malignant cells and determining whether their presence is a cause or consequence of response is crucial. Interrogation of the cytokines upregulated in our NK-like signature will help guide future in vitro models.
Resumo:
Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in STC-1 pGIP/neo cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.