295 resultados para Music driven
Resumo:
The 1980s saw a wave of African films that aimed to represent, on both local and international screens, a sophisticated pre-colonial Africa, thus debunking notions of the continent as primitive. Toward this aim the films inscribed the conventions of oral performance within their visual styles, denying spectator identification with the protagonists and emphasising the presence of the narrator. However, some critics argued that these films exoticised Africa, while their use of oral performance’s distancing effect echoed the ‘scientific’ distance structured by the ethnographic film, in which African societies were represented as ‘the other’. Souleymane Cissé’s Yeelen exemplifies this tension, transposing into cinematic form oral storytelling techniques in the depiction of a power struggle within the covert cult of the komo, a Bambara initiation society unfamiliar to most non-Bambara viewers. This paper demonstrates how the film negotiates this tension via music, which interpellates the international spectator by eliciting a greater identification with the protagonists than that determined at a visual level, while encoding a verisimilitude to rituals that may otherwise be read as the superstitious practices of ‘the other’. In this way, music and image in Yeelen operate as parallel, though often overlapping, discourses, bridging the gap between the film’s culturally specific narrative and formal components, and its international spectators.
Resumo:
A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.
Resumo:
The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469762]
Resumo:
A narrow band proton bursts at energies of 1.6 +/- 0.08 MeV were observed when a water spray consisting of empty set(150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5 X 10(19) W/cm(2). The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an
Resumo:
Using a multichannel Thomson spectrometer we have implemented a tomographic approach allowing the reconstruction of the emission characteristic of a laser driven proton source with high energy and spatial resolution. The results demonstrate the complexity of the temporal and spatial characteristics of such a source. The emitted proton beam, which is laminar and divergent at high energies, becomes convergent at low energies. This implies that a fraction of the proton beam having this kinetic energy is emitted in a collimated way from the target at the
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of similar to 7 X 10(19) W/cm(2). An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model.