267 resultados para Medical Biophysics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical device related infections are becoming an increasing prevalent area of infectious disease. They can be attributed to a multitude of factors from an increasing elderly population with reduced immunological status to increasing microbial resistance and evolution. Of greatest significance is the failure of standard antimicrobial regimens to eradicate biomaterial-related infections due to the formation of microbial biofilms consisting of extracellular polymeric substances. Biofilms form and thrive at the abiotic device surface where nutrients are more concentrated and symbiotic colonies can be formed. The formation of a biofilm matrix occurs in a series of steps beginning with reversible attachment of bacteria to the surface of the substrate and terminating in dispersion of mature biofilm microcolonies that aim to colonise fresh surfaces high in nutrients. Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms. The extent of the infection and the pathogen(s) present can be attributed to both the form and location of the device. It is important that preventative measures and treatment strategies relate to combating the causative microorganisms. Preventative measures include: the use of anti-infective biomaterials that can be coated or incorporated with standard or innovative antimicrobials; modified anti-adhesive medical devices; environmental sterilisation protocols and prophylactic drug therapy. Treatment of established infection may require removal of the device or if deemed possible the device may be salvageable through the initiation of antimicrobial therapy. The increasing spectre of antibiotic resistance and medical device related infections are a large and increasing burden on health care systems and the patient’s quality of life and long term prognosis. As an infectious disease it represents one of the most difficult challenges facing modern science and healthcare.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the physicochemical and drug diffusion properties of rifampicin containing poly(epsilon-caprolactone) (PCL)/polyethylene glycol (PEG) networks, designed as bioactive biomaterials. Uniquely, the effects of the states of both rifampicin and PEG and the interplay between these components on these properties are described. PCL matrices containing rifampicin (1-5%, w/w) and PEG 200 (0-15%, w/w) were prepared by casting from an organic solvent (dichloromethane). The films were subsequently characterized in terms of their thermal/thermorheological, surface and tensile properties, biodegradation and drug diffusion/release properties. Incorporation of PEG and/or rifampicin significantly affected the tensile and surface properties of PCL, lowering the ultimate tensile strength, % elongation at break, Young modulus and storage and loss moduli. Both in the absence and presence of PEG, solubilisation of rifampicin within the crystalline domains of PCL was observed. PEG was present as a dispersed liquid phase. The release of rifampicin (3% loading) was unaffected by the presence of PEG. Similarly the release of rifampicin (5%) was unaffected by low concentrations of PEG (5-10%) however, at higher loadings, the release rate of rifampicin was enhanced by the presence of PEG. Rifampicin release (10% loading) was enhanced by the presence of PEG in a concentration dependent fashion. These observations were accredited to enhanced porosity of the matrix. In all cases, diffusion-controlled release of rifampicin occurred which was unaffected by polymer degradation. This study has uniquely illustrated the effect of hydrophilic pore formers on the physicochemical properties of PCL. Interestingly, enhanced diffusion controlled release was only observed from biomaterials containing high loadings of PEG and rifampicin (5, 10%), concentrations that were shown to affect the mechanical properties of the biomaterials. Care should therefore be shown when adopting this strategy to enhance release of bioactive agents from biomaterials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: