124 resultados para MULTIVARIATE DISTRIBUTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single component geochemical maps are the most basic representation of spatial elemental distributions and commonly used in environmental and exploration geochemistry. However, the compositional nature of geochemical data imposes several limitations on how the data should be presented. The problems relate to the constant sum problem (closure), and the inherently multivariate relative information conveyed by compositional data. Well known is, for instance, the tendency of all heavy metals to show lower values in soils with significant contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, apparent enrichment in many elements due to removal of potassium during weathering. The validity of classical single component maps is thus investigated, and reasonable alternatives that honour the compositional character of geochemical concentrations are presented. The first recommended such method relies on knowledge-driven log-ratios, chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution with SiO2 or volatiles). This is similar to the classical normalisation approach to a single element. The second approach uses the (so called) log-contrasts, that employ suitable statistical methods (such as classification techniques, regression analysis, principal component analysis, clustering of variables, etc.) to extract potentially interesting geochemical summaries. The caution from this work is that if a compositional approach is not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the constant sum constraint. In summary the authors recommend a chain of enquiry that involves searching for the appropriate statistical method that can answer the required geological or geochemical question whilst maintaining the integrity of the compositional nature of the data. The required log-ratio transformations should be applied followed by the chosen statistical method. Interpreting the results may require a closer working relationship between statisticians, data analysts and geochemists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment particle size analysis (PSA) is routinely used to support benthic macrofaunal community distribution data in habitat mapping and Ecological Status (ES) assessment. No optimal PSA Method to explain variability in multivariate macrofaunal distribution has been identified nor have the effects of changing sampling strategy been examined. Here, we use benthic macrofaunal and PSA grabs from two embayments in the south of Ireland. Four frequently used PSA Methods and two common sampling strategies are applied. A combination of laser particle sizing and wet/dry sieving without peroxide pre-treatment to remove organics was identified as the optimal Method for explaining macrofaunal distributions. ES classifications and EUNIS sediment classification were robust to changes in PSA Method. Fauna and PSA samples returned from the same grab sample significantly decreased macrofaunal variance explained by PSA and caused ES to be classified as lower. Employing the optimal PSA Method and sampling strategy will improve benthic monitoring. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degree distribution is a fundamental property of networks. While mean degree provides a standard measure of scale, there are several commonly used shape measures. Widespread use of a single shape measure would enable comparisons between networks and facilitate investigations about the relationship between degree distribution properties and other network features. This paper describes five candidate measures of heterogeneity and recommends the Gini coefficient. It has theoretical advantages over many of the previously proposed measures, is meaningful for the broad range of distribution shapes seen in different types of networks, and has several accessible interpretations. While this paper focusses on degree, the distribution of other node based network properties could also be described with Gini coefficients.