152 resultados para MODULATED NOISE
Resumo:
Before a natural sound can be recognized, an auditory signature of its source must be learned through experience. Here we used random waveforms to probe the formation of new memories for arbitrary complex sounds. A behavioral measure was designed, based on the detection of repetitions embedded in noises up to 4 s long. Unbeknownst to listeners, some noise samples reoccurred randomly throughout an experimental block. Results showed that repeated exposure induced learning for otherwise totally unpredictable and meaningless sounds. The learning was unsupervised and resilient to interference from other task-relevant noises. When memories were formed, they emerged rapidly, performance became abruptly near-perfect, and multiple noises were remembered for several weeks. The acoustic transformations to which recall was tolerant suggest that the learned features were local in time. We propose that rapid sensory plasticity could explain how the auditory brain creates useful memories from the ever-changing, but sometimes repeating, acoustical world. © 2010 Elsevier Inc.
Resumo:
Three experiments measured the effects of age on informational masking of speech by competing speech. The experiments were designed to minimize the energetic contributions of the competing speech so that informational masking could be measured with no large corrections for energetic masking. Experiment 1 used a "speech-in-speech-in-noise" design, in which the competing speech was presented in noise at a signal-to-noise ratio (SNR) of -4 dB. This ensured that the noise primarily contributed the energetic masking but the competing speech contributed the informational masking. Equal amounts of informational masking (3 dB) were observed for young and elderly listeners, although less was found for hearing-impaired listeners. Experiment 2 tested a range of SNRs in this design and showed that informational masking increased with SNR up to about an SNR of -4 dB, but decreased thereafter. Experiment 3 further reduced the energetic contribution of the competing speech by filtering it into different frequency bands from the target speech. The elderly listeners again showed approximately the same amount of informational masking (4-5 dB), although some elderly listeners had particular difficulty understanding these stimuli in any condition. On the whole, these results suggest that young and elderly listeners were equally susceptible to informational masking. © 2009 Acoustical Society of America.
Resumo:
In noise repetition-detection tasks, listeners have to distinguish trials of continuously running noise from trials in which noise tokens are repeated in a cyclic manner. Recently, it has been shown that using the exact same noise token across several trials (“reference noise”) facilitates the detection of repetitions for this token [Agus et al. (2010). Neuron 66, 610–618]. This was attributed to perceptual learning. Here, the nature of the learning was investigated. In experiment 1, reference noise tokens were embedded in trials with or without cyclic presentation. Naïve listeners reported repetitions in both cases, thus responding to the reference noise even in the absence of an actual repetition. Experiment 2, with the same listeners, showed a similar pattern of results even after the design of the experiment was made explicit, ruling out a misunderstanding of the task. Finally, in experiment 3, listeners reported repetitions in trials containing the reference noise, even before ever hearing it presented cyclically. The results show that listeners were able to learn and recognize noise tokens in the absence of an immediate repetition. Moreover, the learning mandatorily interfered with listeners' ability to detect repetitions. It is concluded that salient perceptual changes accompany the learning of noise.
Resumo:
Performance at the International Computer Music Conference, University of Huddersfield (with Eric Lyon, Franziska Schroder & Steve Davis).
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p <0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p <0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.
Resumo:
Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.
Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.
Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.
Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.
Resumo:
Purpose: The aim of this work was to determine if volumetric modulated arc therapy (VMAT) plans, created for constant dose-rate (cdrVMAT) delivery are a viable alternative to step and shoot five-field intensity modulated radiation therapy (IMRT). Materials and methods: The cdrVMAT plans, inverse planned on a treatment planning system with no solution to account for couch top or rails, were created for delivery on a linear accelerator with no variable dose rate control system. A series of five-field IMRT and cdrVMAT plans were created using dual partial arcs (gantry rotating between 260° and 100°) with 4° control points for ten prostate patients with the average rectal constraint incrementally increased. Pareto fronts were compared for the planning target volume homogeneity and average rectal dose between the two techniques for each patient. Also investigated were tumour control probability and normal tissue complication probability values for each technique. The delivery parameters [monitor units (MU) and time] and delivery accuracy of the IMRT and VMAT plans were also compared. Results: Pareto fronts showed that the dual partial arc plans were superior to the five-field IMRT plans, particularly for the clinically acceptable plans where average rectal doses were less for rotational plans (p = 0·009) with no statistical difference in target homogeneity. The cdrVMAT plans had significantly more MU (p = 0·005) but the average delivery time was significantly less than the IMRT plans by 42%. All clinically acceptable cdrVMAT plans were accurate in their delivery (gamma 99·2 ± 1·1%, 3%3 mm criteria). Conclusions Accurate delivery of dual partial arc cdrVMAT avoiding the couch top and rails has been demonstrated.
Resumo:
Within Ireland, interest in strategically supporting young people’s participation in the arts has increased. Additionally, awareness of the Internet’s potential for promot- ing engagement with the arts has grown. Addressing national directives and local needs assessments, South Dublin County Council’s Arts Office initiated NOISE South Dublin (http://www.noisesouthdublin.com), an interactive Web site based on Australia Council’s NOISE project (http://www.noise.net), to promote the creative development of young people in the county. This article presents the practical chal- lenges and potential of youth arts Web-based programs for harnessing the creative engagement of youth. It concludes that the Internet is only useful if it expands online engagement offline.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted values, indicating dose-averaged LET as a suitable parameter for biological effectiveness. Data have also been used to validate a RBE parameterized model.
Resumo:
To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.