143 resultados para Lethal mutation.
Resumo:
BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression.
OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected.
DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature.
RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for.
CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.
Resumo:
A nonsense mutation in DMRT3 ('Gait keeper' mutation) has a predominant effect on gaiting ability in horses, being permissive for the ability to perform lateral gaits and having a favourable effect on speed capacity in trot. The DMRT3 mutant allele (A) has been found in high frequency in gaited breeds and breeds bred for harness racing, while other horse breeds were homozygous for the wild-type allele (C). The aim of this study was to evaluate further the effect of the DMRT3 nonsense mutation on the gait quality and speed capacity in the multigaited Icelandic horse and demonstrate how the frequencies of the A- and C- alleles have changed in the Icelandic horse population in recent decades. It was confirmed that homozygosity for the DMRT3 nonsense mutation relates to the ability to pace. It further had a favourable effect on scores in breeding field tests for the lateral gait tölt, demonstrated by better beat quality, speed capacity and suppleness. Horses with the CA genotype had on the other hand significantly higher scores for walk, trot, canter and gallop, and they performed better beat and suspension in trot and gallop. These results indicate that the AA genotype reinforces the coordination of ipsilateral legs, with the subsequent negative effect on the synchronized movement of diagonal legs compared with the CA genotype. The frequency of the A-allele has increased in recent decades with a corresponding decrease in the frequency of the C-allele. The estimated frequency of the A-allele in the Icelandic horse population in 2012 was 0.94. Selective breeding for lateral gaits in the Icelandic horse population has apparently altered the frequency of DMRT3 genotypes with a predicted loss of the C-allele in relatively few years. The results have practical implications for breeding and training of Icelandic horses and other gaited horse breeds.
Resumo:
Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.
Resumo:
This is an analysis of the case law of the European Court of Human Rights on the obligation on States to plan and control the use of potentially lethal force by their police and military personnel. It illustrates the Court's attachment to the strict or careful scrutiny test and suggests how the Court might want to develop its jurisprudence in the future.
Resumo:
The role of antiplatelet therapy as primary prophylaxis of thrombosis in low-risk essential thrombocythemia has not been studied in randomized clinical trials. We assessed the benefit/risk of low-dose aspirin in 433 low-risk essential thrombocythemia patients (CALR-mutated n=271, JAK2V617F-mutated n=162) who were on antiplatelet therapy or observation only. After a 2215 person-years follow-up free from cytoreduction, 25 thrombotic and 17 bleeding episodes were recorded. In CALR-mutated patients, antiplatelet therapy did not affect the risk of thrombosis but was associated with a higher incidence of bleeding (12.9 vs. 1.8 x1000 patient-years, p=0.03). In JAK2V617F-mutated patients, low-dose aspirin was associated with a reduced incidence of venous thrombosis with no effect on the risk of bleeding. Coexistence of JAK2V617F-mutation and cardiovascular risk factors increased the risk of thrombosis, even after adjusting for treatment with low-dose aspirin (incidence rate ratio: 9.8; 95% confidence interval: 2.3-42.3; p=0.02). Time free from cytoreduction was significantly shorter in CALR-mutated than in JAK2V617F-mutated essential thrombocythemia (median time 5 years and 9.8 years, respectively; p=0.0002) usually to control extreme thrombocytosis. In conclusion, in patients with low-risk, CALR-mutated essential thrombocythemia, low-dose aspirin does not reduce the risk of thrombosis and may increase the risk of bleeding.
Resumo:
Background: Women with germline BRCA1 mutations have a high lifetime risk of breast cancer, with the only available risk-reduction strategies being risk-reducing surgery or chemoprevention. These women predominantly develop triple-negative breast cancers; hence, it is unlikely that selective estrogen receptor modulators (serms) will reduce the risk of developing cancer, as these have not been shown to reduce the incidence of estrogen receptor–negative breast cancers. Preclinical data from our laboratory suggest that exposure to estrogen and its metabolites is capable of causing dna double-strand breaks (dsbs) and thus driving genomic instability, an early hallmark of BRCA1-related breast cancer. Therefore, an approach that lowers circulating estrogen levels and reduces estrogen metabolite exposure may prove a successful chemopreventive strategy.
Aims: To provide proof of concept of the hypothesis that the combination of luteinizing-hormone releasing-hormone agonists (lhrha) and aromatase inhibitors (ais) can suppress circulating levels of estrogen and its metabolites in BRCA1 mutation carriers, thus reducing estrogen metabolite levels in breast cells, reducing dna dsbs, and potentially reducing the incidence of breast cancer.
Methods: 12 Premenopausal BRCA1 mutation carriers will undergo baseline ultrasound-guided breast core biopsy and plasma and urine sampling. Half the women will be treated for 3 months with combination goserelin (lhrha) plus anastrazole (ai), and the remainder with tamoxifen (serm) before repeat tissue, plasma, and urine sampling. After a 1-month washout period, groups will cross over for a further 3 months treatment before final biologic sample collection. Tissue, plasma, and urine samples will be examined using a combination of immunohistochemistry, comet assays, and ultrahigh performance liquid chromatography tandem mass spectrometry to assess the impact of lhrha plus ai compared with serm on levels of dna damage, estrogens, and genotoxic estrogen metabolites. Quality of life will also be assessed during the study.
Results: This trial is currently ongoing.
Resumo:
Exon 11 KIT mutations are found in a majority of gastrointestinal stromal tumors (GIST) and are usually predictive of response to imatinib, a KIT, PDGFRA and ABL inhibitor. Exon 11 mutations with poor sensitivity to imatinib and poor outcome can be observed on rare occasions, including p.(L576P). In silico and in vitro studies suggested a decreased binding affinity for imatinib in p.(L576P) KIT mutations, thereby offering an explanation for their poor outcome and poor response to standard therapy. These observations were further corroborated with anecdotal case reports of refractoriness or non-durable response to imatinib therapy. However, we describe the favorable response to imatinib and outcome in 5 p.(L576P)-KIT mutant GIST patients treated at a tertiary sarcoma referral center. The sensitivity of p.(L576P)-KIT mutations to imatinib, and the prognostic impact of this mutation need to be further evaluated in a larger cohort. Based on our observations, p.(L576P) mutated GISTs should be treated with standard first line imatinib therapy.
Resumo:
Background: Lethal-7 (let-7) is a tumour suppressor miRNA which acts by down-regulating several oncogenes including KRAS. A single-nucleotide polymorphism (rs61764370, T > G base substitution) in the let-7 complementary site 6 (LCS-6) of KRAS mRNA has been shown to predict prognosis in early-stage colorectal cancer (CRC) and benefit from anti-epidermal growth factor receptor monoclonal antibodies in metastatic CRC. Patients and methods: We analysed rs61764370 in EXPERT-C, a randomised phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX plus or minus cetuximab in locally advanced rectal cancer. DNA was isolated from formalin-fixed paraffin-embedded tumour tissue and genotyped using a PCR-based commercially available assay. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms. Results: A total of 155/164 (94.5%) patients were successfully analysed, of whom 123 (79.4%) and 32 (20.6%) had the LCS-6 TT and LCS-6 TG genotype, respectively. Carriers of the G allele were found to have a statistically significantly higher rate of complete response (CR) after neoadjuvant therapy (28.1% versus 10.6%; P = 0.020) and a trend for better 5-year progression-free survival (PFS) [77.4% versus 64.5%: hazard ratio (HR) 0.56; P = 0.152] and overall survival (OS) rates (80.3% versus 71.9%: HR 0.59; P = 0.234). Both CR and survival outcomes were independent of the use of cetuximab. The negative prognostic effect associated with KRAS mutation appeared to be stronger in patients with the LCS-6 TT genotype (HR PFS 1.70, P = 0.078; HR OS 1.79, P = 0.082) compared with those with the LCS-6 TG genotype (HR PFS 1.33, P = 0.713; HR OS 1.01, P = 0.995). Conclusion: This analysis suggests that rs61764370 may be a biomarker of response to neoadjuvant treatment and an indicator of favourable outcome in locally advanced rectal cancer possibly by mitigating the poor prognosis of KRAS mutation. In this setting, however, this polymorphism does not appear to predict cetuximab benefit.
Resumo:
AIMS: Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. METHODS: 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. RESULTS: Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p
Resumo:
The cobas® (Roche) portfolio of companion diagnostics in oncology currently has three assays CE-marked for in vitro diagnostics. Two of these (EGFR and BRAF) are also US FDA-approved. These assays detect clinically relevant mutations that are correlated with response (BRAF, EGFR) or lack of response (KRAS) to targeted therapies such as selective mutant BRAF inhibitors in malignant melanoma, tyrosine kinases inhibitor in non-small cell lung cancer and anti-EGFR monoclonal antibodies in colorectal cancer, respectively. All these assays are run on a single platform using DNA extracted from a single 5 µm section of a formalin-fixed paraffin-embedded tissue block. The assays provide an ‘end-to-end’ solution from extraction of DNA to automated analysis and report on the cobas z 480. The cobas tests have shown robust and reproducible performance, with high sensitivity and specificity and low limit of detection, making them suitable as companion diagnostics for clinical use.