167 resultados para Latex allergy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterogeneous morphological, biochemical and functional characteristics of mast cells from different species and from different tissue sites in the same species have been described for over 30 years. Far from being mere histochemical or pharmacological curiosities these differences have far reaching implications for therapeutic practice. This review concentrates on two important areas affected by mast cell heterogeneity, those of adverse reactions to therapeutic agents and the efficacy of anti-allergy therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Juvenile idiopathic arthritis (JIA) is a heterogeneous disease characterized by chronic joint inflammation of unknown cause in children. JIA is an autoimmune disease and small numbers of auto-antibodies have been reported in JIA patients. The identification of antibody markers could improve the existing clinical management of patients. Methods A pilot study was performed on the application of a high-throughput platform, nucleic acid programmable protein arrays (NAPPA), to assess the levels of antibodies present in the systemic circulation and synovial joint of a small cohort of juvenile arthritis patients. Plasma and synovial fluid from ten JIA patients was screened for antibodies against 768 proteins on NAPPA. Results Quantitative reproducibility of NAPPA was demonstrated with >0.95 intra- and inter- array correlations. A strong correlation was also observed for the levels of antibodies between plasma and synovial fluid across the study cohort (r=0.96). Differences in the levels of 18 antibodies were revealed between sample types across all patients. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis. Conclusions NAPPA provides a high-throughput quantitatively reproducible platform to screen for disease specific autoantibodies at the proteome level on a microscope slide. The strong correlation between the circulating antibody levels and those of the inflamed joint represents a novel finding and provides confidence to use plasma for discovery of autoantibodies in JIA, thus circumventing the challenges associated with joint aspiration. We expect that autoantibody profiling of JIA patients on NAPPA could yield antibody markers that can act as criteria to stratify patients, predict outcomes and understand disease etiology at the molecular level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential application of phage therapy for the control of bacterial biofilms has received increasing attention as resistance to conventional antibiotic agents continues to increase. The present study identifies antimicrobial synergy between bacteriophage T4 and a conventional antibiotic, cefotaxime, via standard plaque assay and, importantly, in the in vitro eradication of biofilms of the T4 host strain Escherichia coli 11303. Phage-antibiotic synergy (PAS) is defined as the phenomenon whereby sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacteria's production of virulent phage. Increasing sub-lethal concentrations of cefotaxime resulted in an observed increase in T4 plaque size and T4 concentration. The application of PAS to the T4 one-step growth curve also resulted in an increased burst size and reduced latent period. Combinations of T4 bacteriophage and cefotaxime significantly enhanced the eradication of bacterial biofilms when compared to treatment with cefotaxime alone. The addition of medium (10(4) PFU mL(-1) ) and high (10(7) PFU mL(-1) ) phage titres reduced the minimum biofilm eradication concentration value of cefotaxime against E. coli ATCC 11303 biofilms from 256 to 128 and 32 µg mL(-1) , respectively. Although further investigation is needed to confirm PAS, this study demonstrates, for the first time, that synergy between bacteriophage and conventional antibiotics can significantly improve biofilm control in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism. Vacuoles containing B. cenocepacia strain J2315, an isolate of the transmissible ET12 clone, recruited Rab5 and synthesized phosphatidylinositol-3-phosphate, indicating progression to the early phagosomal stage. Despite the fact that the B. cenocepacia-containing vacuoles rarely fused with lysosomes, they could nevertheless acquire the late phagosomal markers CD63 and Rab7. Fluorescence recovery after photobleaching and use of a probe that detects Rab7-guanosine triphosphate indicated that activation of Rab7 was impaired by B. cenocepacia, accounting at least in part for the inability of the vacuole to merge with lysosomes. The Rab7 defect was not due to excessive cholesterol accumulation and was confined to the infected vacuoles. Jointly, these experiments indicate that B. cenocepacia express virulence factors capable of interfering with Rab7 function and thereby with membrane traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung disease in cystic fibrosis (CF) is typified by the development of chronic airways infection culminating in bronchiectasis and progression to end-stage respiratory disease. Pseudomonas aeruginosa, a ubiquitous gram-negative bacteria, is the archetypical CF pathogen and is associated with an accelerated clinical decline. The development and widespread use of chronic suppressive aerosolized antibacterial therapies, in particular Tobramycin Inhalation Solution (TIS), in CF has contributed to reduced lung function decline and improved survival. However, the requirement for the aerosolization of these agents through nebulizers has been associated with increased treatment burden, reduced quality of life and remain a barrier to broader uptake. Tobramycin Inhalation Powder (TIP™) has been developed by Novartis with the express purpose of delivering the same benefits as TIS in a time-effective manner. Administered via the T-326™ (Novartis) Inhaler in four individual 28-mg capsules, TIP can be administered in a quarter of the time of traditional nebulizers and is inherently portable. In clinical studies, TIP has been shown to be safe, result in equivalent or superior reductions in P. aeruginosa sputum density and produce similar improvements in pulmonary function. TIP offers significant advantages in time saving, portability and convenience over traditional nebulized TIS with comparable clinical outcomes for individuals with CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic contact dermatitis is the most frequent occupational disease in industrialized countries. It is caused by CD8(+) T cell-mediated contact hypersensitivity (CHS) reactions triggered at the site of contact by a variety of chemicals, also known as weak haptens, present in fragrances, dyes, metals, preservatives, and drugs. Despite the myriad of potentially allergenic substances that can penetrate the skin, sensitization is relatively rare and immune tolerance to the substance is often induced by as yet poorly understood mechanisms. Here we show, using the innocuous chemical 2,4-dinitrothiocyanobenzene (DNTB), that cutaneous immune tolerance in mice critically depends on epidermal Langerhans cells (LCs), which capture DNTB and migrate to lymph nodes for direct presentation to CD8(+) T cells. Depletion and adoptive transfer experiments revealed that LCs conferred protection from development of CHS by a mechanism involving both anergy and deletion of allergen-specific CD8(+) T cells and activation of a population of T cells identified as ICOS(+)CD4(+)Foxp3(+) Tregs. Our findings highlight the critical role of LCs in tolerance induction in mice to the prototype innocuous hapten DNTB and suggest that strategies targeting LCs might be valuable for prevention of cutaneous allergy.