145 resultados para LOW-ENERGY ELECTRONS
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.
Resumo:
Energy consumption and total cost of ownership are daunting challenges for Datacenters, because they scale disproportionately with performance. Datacenters running financial analytics may incur extremely high operational costs in order to meet performance and latency requirements of their hosted applications. Recently, ARM-based microservers have emerged as a viable alternative to high-end servers, promising scalable performance via scale-out approaches and low energy consumption. In this paper, we investigate the viability of ARM-based microservers for option pricing, using the Monte Carlo and Binomial Tree kernels. We compare an ARM-based microserver against a state-of-the-art x86 server. We define application-related but platform-independent energy and performance metrics to compare those platforms fairly in the context of datacenters for financial analytics and give insight on the particular requirements of option pricing. Our experiments show that through scaling out energyefficient compute nodes within a 2U rack-mounted unit, an ARM-based microserver consumes as little as about 60% of the energy per option pricing compared to an x86 server, despite having significantly slower cores. We also find that the ARM microserver scales enough to meet a high fraction of market throughput demand, while consuming up to 30% less energy than an Intel server
Resumo:
Objective
Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females.
Methods
Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design.
Results
Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants.
Conclusions
High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity.
Resumo:
The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.
Resumo:
In the catalytic hydrogenation of hydrocarbons, subsurface hydrogen is known experimentally to be much more reactive than surface hydrogen. We use density functional theory to identify low-energy pathways for the hydrogenation of methyl adsorbed on Ni(111) by surface and subsurface hydrogen. The metastability of subsurface hydrogen with respect to chemisorbed hydrogen is mainly responsible for the low activation barrier for subsurface reactions. (C) 1999 American Institute of Physics.
Resumo:
CO oxidation on Pt(111) is studied with ab initio density functional theory. The low energy pathway and transition state for the reaction are identified. The key event is the breaking of an O-metal bond prior to the formation of a chemisorbed CO2 molecule. The pathway can be rationalized in terms of competition of the O and C atoms for bonding with the underlying surface, and the predominant energetic barrier is the strength of the O-metal bond.
Resumo:
This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.
Resumo:
Adsorption of 0.5 monolayer of N adatoms on W{100} results in a sharp (root 2 X root 2)R45 degrees LEED pattern. The only previous quantitative LEED study of this system gave a simple overlayer model with a Pendry R-factor of 0.55. An exhaustive search has been made of possible structures, including a novel vacancy reconstruction, displacive reconstructions and underlayer adsorption. From this work a new overlayer structure is derived with an R(p) value of 0.22, displaying a considerable buckling of 0.27 +/- 0.05 Angstrom within the second W layer and consequently involving large changes in the interlayer spacings of the surface. The N adatom is pseudo-five-fold coordinated to the W surface, bonding to a second-layer W atom with a nearest-neighbour bond length of 2.13 Angstrom and with the four next-nearest-neighbour W atoms in the surface plane at 2.27 Angstrom. The structure does not resolve the work function anomaly observed on this surface.
Resumo:
A very fast method, cluster low-energy electron diffraction (LEED) is proposed for LEED I-V spectral analysis, in which three appproximations are introduced: the small-atom approximation, omission of the structure factors, and truncation of higher order ( > 2) scattering events. The method has been tested using a total of four sets of I-V spectra calculated by fully dynamic LEED for (i) the simple overlayer system, O on Ni{100}, and (ii) the reconstructed system, Cu on W{100}, and also one set of experimental data from W{100}-c(2 X 2)-Cu. In each case the correct structural parameters are recovered. It is suggested that for complex systems cluster LEED provides an efficient fast route to trial structures, which could be refined by automated tenser LEED.
Resumo:
LOW-ENERGY electron diffraction (LEED) has become the most successful technique in surface crystallography1, but because of the complexity of the surface-electron scattering interactions, analyses of LEED data are still conducted on a trial-and-error basis: a direct-inversion method for treating LEED intensity data remains an attractive goal2. Building on recent theoretical and experimental developments in electron holography from surface structures3-16, we show here that three-dimensional images with atomic resolution can be obtained by a direct transform of conventional LEED intensity spectra.
Resumo:
The surface structure of the clean Co{1010BAR} surface and a c(2 x 2) potassium overlayer have been determined by quantitative low energy electron diffraction. The Co{1010BAR} sample has been shown to be laterally unreconstructed with the surface being uniquely terminated by an outermost closely packed double layer (dz12 = 0.68 angstrom). A damped oscillatory relaxation of the outermost three atomic layers occurs, with relaxations DELTA-dz12 = -6.5 +/- 2% and DELTA-dz23 = +1.0 +/- 2%.
The c(2 x 2) overlayer formed at a coverage of 0.5 ML was subjected to a full I-V analysis. A range of adsorption sites were tested including fourfold hollow, on-top, and both long and short bridge sites in combination with both "long" and "short" cobalt interlayer terminations. A clear preference was found for adsorption in the maximal coordination fourfold hollow site. No switching of surface termination occurs. The potassium adatoms reside in the [1210BAR] surface channels directly above second layer cobalt atoms with a potassium to outermost cobalt interlayer separation of 2.44 +/- 0.05 angstrom. Potassium-cobalt bond lengths of 3.40 +/- 0.05 and 3.12 +/- 0.05 angstrom between the four (one) outermost (second) layer nearest-neighbour substrate atoms suggests a potassium effective radius of 1.87 +/- 0.05 angstrom, somewhat smaller than the Pauling covalent radius and considerably larger than the ionic radius (1.38 angstrom). The alkali-surface bonding is thus predominantly "covalent"/"metallic".
Resumo:
Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.
Resumo:
The ionic liquid trihexyltetradecylphosphonium 1,2,4-triazolide, [P66614][124Triz], has been shown to chemisorb CO2 through equimolar binding of the carbon dioxide with the 1,2,4-triazolide anion. This leads to a possible new, low energy pathway for the electrochemical reduction of carbon dioxide to formate and syngas at low overpotentials, utilizing this reactive ionic liquid media. Herein, an electrochemical investigation of water and carbon dioxide addition to the [P66614][124Triz] on gold and platinum working electrodes is reported. Electrolysis measurements have been performed using CO2 saturated [P66614][124Triz] based solutions at −0.9 V and −1.9 V on gold and platinum electrodes. The effects of the electrode material on the formation of formate and syngas using these solutions are presented and discussed.
Resumo:
A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.
Resumo:
By utilising a research by design methodology, the paper develops a process-based and phased design to develop a new emergent form to these neighbourhoods, one in which new productive systems are embedded into the city, at a small-scales. These include a peak-load hydro-electric project in Ligoneal; a productive landscape in Glen Cairn and a city-wide energy refurbishment utilising neighbourhood waste streams.
The three projects illustrate different ways in which place-based solutions can enact urban transformation through a process of rigorous visualisation of process, and its attendant changes in content and form of the neighbourhood, These designs, based around a process-based strategy plan, allow for a roadmap for development to be created that could change the modus operandi of an area over a relatively short period of time,. The paper demonstrates that even modest investments of productive technologies at a local scale can fundamentally change the form and the economic and environmental operation of the city in the future, and create a new resilient city, one that can have resilience built-in. This resilience allows the neighbourhood to be less externally dependent on resources, economically active and more socially just.