567 resultados para Johnston, Jerome
Resumo:
I discovered that 2,5OAS family of proteins was transcriptionally upregulated by BRCA1 and interferon gamma in a synergistic manner. This correlated with synergistically induced apoptosis and both the induction of 2,5OAS and the accompanying apoptosis could be inhibited by 2,5OAS specific siRNA proving 2,5OAS was the apoptotic effector.
Resumo:
The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.
The MTHFR C677T polymorphism is associated with depressive episodes in patients from Nothern Ireland
Resumo:
Cysteine proteinases have been implicated in astrocytoma invasion. We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175–82). We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker. Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses. Immunohistochemical analysis of CatS expression was performed on 126 paraffin-embedded tumour samples. Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis. ELISA revealed minimal expression of CatS in normal brain homogenates. CatS expression was increased in grade IV tumours whereas astrocytoma grades I–III exhibited lower values. Immunohistochemical analysis revealed a similar pattern of expression. Moreover, high-CatS immunohistochemical scores in glioblastomas were associated with significantly shorter survival (10 vs. 5 months, p = 0.014). With forced inclusion of patient age, radiation dose and Karnofsky score in the Cox multivariate model, CatS score was found to be an independent predictor of survival. CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas. CatS may serve as a useful prognostic indicator and potential target for anti-invasive therapy.
Resumo:
CD33 is a member of the sialic acid–binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to -CD33 therapy.