134 resultados para Inequality measures
Resumo:
In a recent paper (Automatica 49 (2013) 2860–2866), the Wirtinger-based inequality has been introduced to derive tractable stability conditions for time-delay or sampled-data systems. We point out that there exist two errors in Theorem 8 for the stability analysis of sampled-data systems, and the correct theorem is presented.
Resumo:
This paper examines the relationship between stature and later life health in 6 emerging economies, each of which are expected to experience significant increases in the mean age of their populations over the coming decades. Using data from the WHO Study on Global Ageing and Adult Health (SAGE) and pilot data from the Longitudinal Ageing Study in India (LASI), I show that various measures of health are associated with height, a commonly used proxy for childhood environment. In the pooled sample, a 10 cm increase in height is associated with between a 2 and 3 percentage point increase in the probability of being in very good or good self-reported health, a 3 percentage point increase in the probability of reporting no difficulties with activities of daily living or instrumental activities of daily living, and between a fifth and a quarter of a standard deviation increase in grip strength and lung function. Adopting a methodology previously used in the research on inequality, I also summarise the height-grip strength gradient for each country using the concentration index, and provide a decomposition analysis.
Resumo:
A RkNN query returns all objects whose nearest k neighbors
contain the query object. In this paper, we consider RkNN
query processing in the case where the distances between
attribute values are not necessarily metric. Dissimilarities
between objects could then be a monotonic aggregate of dissimilarities
between their values, such aggregation functions
being specified at query time. We outline real world cases
that motivate RkNN processing in such scenarios. We consider
the AL-Tree index and its applicability in RkNN query
processing. We develop an approach that exploits the group
level reasoning enabled by the AL-Tree in RkNN processing.
We evaluate our approach against a Naive approach
that performs sequential scans on contiguous data and an
improved block-based approach that we provide. We use
real-world datasets and synthetic data with varying characteristics
for our experiments. This extensive empirical
evaluation shows that our approach is better than existing
methods in terms of computational and disk access costs,
leading to significantly better response times.
Resumo:
This case study deals with the role of time series analysis in sociology, and its relationship with the wider literature and methodology of comparative case study research. Time series analysis is now well-represented in top-ranked sociology journals, often in the form of ‘pooled time series’ research designs. These studies typically pool multiple countries together into a pooled time series cross-section panel, in order to provide a larger sample for more robust and comprehensive analysis. This approach is well suited to exploring trans-national phenomena, and for elaborating useful macro-level theories specific to social structures, national policies, and long-term historical processes. It is less suited however, to understanding how these global social processes work in different countries. As such, the complexities of individual countries - which often display very different or contradictory dynamics than those suggested in pooled studies – are subsumed. Meanwhile, a robust literature on comparative case-based methods exists in the social sciences, where researchers focus on differences between cases, and the complex ways in which they co-evolve or diverge over time. A good example of this is the inequality literature, where although panel studies suggest a general trend of rising inequality driven by the weakening power of labour, marketisation of welfare, and the rising power of capital, some countries have still managed to remain resilient. This case study takes a closer look at what can be learned by applying the insights of case-based comparative research to the method of time series analysis. Taking international income inequality as its point of departure, it argues that we have much to learn about the viability of different combinations of policy options by examining how they work in different countries over time. By taking representative cases from different welfare systems (liberal, social democratic, corporatist, or antipodean), we can better sharpen our theories of how policies can be more specifically engineered to offset rising inequality. This involves a fundamental realignment of the strategy of time series analysis, grounding it instead in a qualitative appreciation of the historical context of cases, as a basis for comparing effects between different countries.
Resumo:
We describe five children who died of clinical rabies in a three month period (September to November 2011) in the Queen Elizabeth Central Hospital. From previous experience and hospital records, this number of cases is higher than expected. We are concerned that difficulty in accessing post-exposure prophylaxis (PEP) rabies vaccine may be partly responsible for this rise. We advocate: (a) prompt course of active immunisation for all patients with significant exposure to proven or suspected rabid animals. (b) the use of an intradermal immunisation regime that requires a smaller quantity of the vaccine than the intramuscular regime and gives a better antibody response. (c) improved dog rabies control measures.
Resumo:
Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.