244 resultados para Immunologic Deficiency Syndromes -- genetics -- immunology
Resumo:
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Resumo:
Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.
Resumo:
Invasive infection caused by Neisseria meningitidis is a worldwide public health problem. Previous reports have indicated that carriage of common ‘defective’ structural polymorphisms of the host mannose-binding lectin gene (MBL2) greatly increases an individual’s risk of developing the disease. We report the largest case–control study so far to investigate the effect of these polymorphisms in meningococcal disease (296 PCR-positive cases and 5196 population controls, all of European ancestry) and demonstrate that no change in risk is associated with the polymorphisms overall or in any age-defined subgroup. This finding contrasts with two smaller studies that reported an increase in risk. A systematic review of all studies of MBL2 polymorphisms in people of European ancestry published since 1999, including 24 693 individuals, revealed a population frequency of the combined ‘defective’MBL2 allele of 0.230 (95% confidence limits: 0.226–0.234). The past reported associations of increased risk of meningococcal disease were because of low ‘defective’ allele frequencies in their study control populations (0.13 and 0.04) that indicate systematic problems with the studies. The data from our study and all other available evidence indicate that MBL2 structural polymorphisms do not predispose children or adults to invasive meningococcal disease.
Resumo:
Contesting animals typically gather information about the resource value and that information affects fight motivation. However, it is possible that particular resource characteristics alter the ability to fight independently of the motivation. Using hermit crabs, we investigate how the resource in terms of shell quality affects both motivation and ability to fight. These crabs fight for shells, but those shells have to be carried and may impose physiological costs that impede fight vigour. We find that the shell has different effects on motivation and ability. Potential attackers in very small shells were highly motivated to attack but, rather than having enhanced ability, unexpectedly quickly fatigued and subsequently were not more successful in the fights than were crabs in larger shells. We also examined whether defending crabs could gather information about the attacker's shell from the vigour of the attack. Defending crabs gave up quickly when a potential gain had been assessed, indicating that such information had been gathered. However, there was no indication that this could be owing to the activity of the attacker and the information is probably gathered via visual assessment of the shell.
Resumo:
AbstractInvasive infection caused by Neisseria meningitidis is a worldwide public health problem. Previous reports have indicated that carriage of common 'defective' structural polymorphisms of the host mannose-binding lectin gene (MBL2) greatly increases an individual's risk of developing the disease. We report the largest case-control study so far to investigate the effect of these polymorphisms in meningococcal disease (296 PCR-positive cases and 5196 population controls, all of European ancestry) and demonstrate that no change in risk is associated with the polymorphisms overall or in any age-defined subgroup. This finding contrasts with two smaller studies that reported an increase in risk. A systematic review of all studies of MBL2 polymorphisms in people of European ancestry published since 1999, including 24 693 individuals, revealed a population frequency of the combined 'defective'MBL2 allele of 0.230 (95% confidence limits: 0.226-0.234). The past reported associations of increased risk of meningococcal disease were because of low 'defective' allele frequencies in their study control populations (0.13 and 0.04) that indicate systematic problems with the studies. The data from our study and all other available evidence indicate that MBL2 structural polymorphisms do not predispose children or adults to invasive meningococcal disease.
Resumo:
Disruption of glandular architecture associates with poor clinical outcome in high-grade colorectal cancer (CRC). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) regulates morphogenic growth of benign MDCK (Madin Darby Canine Kidney) cells through effects on the Rho-like GTPase cdc42 (cell division cycle 42). This study investigates PTEN-dependent morphogenesis in a CRC model. Stable short hairpin RNA knockdown of PTEN in Caco-2 cells influenced expression or localization of cdc42 guanine nucleotide exchange factors and inhibited cdc42 activation. Parental Caco-2 cells formed regular hollow gland-like structures (glands) with a single central lumen, in three-dimensional (3D) cultures. Conversely, PTEN-deficient Caco-2 ShPTEN cells formed irregular glands with multiple abnormal lumens as well as intra- and/or intercellular vacuoles evocative of the high-grade CRC phenotype. Effects of targeted treatment were investigated. Phosphatidinylinositol 3-kinase (PI3K) modulating treatment did not affect gland morphogenesis but did influence gland number, gland size and/or cell size within glands. As PTEN may be regulated by the nuclear receptor peroxisome proliferator-activated receptor-? (PPAR?), cultures were treated with the PPAR? ligand rosiglitazone. This treatment enhanced PTEN expression, cdc42 activation and rescued dysmorphogenesis by restoring single lumen formation in Caco-2 ShPTEN glands. Rosiglitazone effects on cdc42 activation and Caco-2 ShPTEN gland development were attenuated by cotreatment with GW9662, a PPAR? antagonist. Taken together, these studies show PTEN-cdc42 regulation of lumen formation in a 3D model of human CRC glandular morphogenesis. Treatment by the PPAR? ligand rosiglitazone, but not PI3K modulators, rescued colorectal glandular dysmorphogenesis of PTEN deficiency.