141 resultados para IPC, passive, port-hamiltonian, hamiltonian, RCC, KUKA, ROS
Resumo:
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.
Resumo:
We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining a shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.
Resumo:
Active network scanning injects traffic into a network and observes responses to draw conclusions about the network. Passive network analysis works by looking at network meta data or by analyzing traffic as it traverses a fixed point on the network. It may be infeasible or inappropriate to scan critical infrastructure networks. Techniques exist to uniquely map assets without resorting to active scanning. In many cases, it is possible to characterize and identify network nodes by passively analyzing traffic flows. These techniques are considered in particular with respect to their application to power industry critical infrastructure.
Resumo:
The preparation of Janus fibers using a new side-by-side electrospinning process is reported. By manipulating the angle between the two ports of the spinneret emitting the working fluids, Janus nanofibers with tunable structures in terms of width, interfacial area and also volume of each side can be easily fabricated.
Resumo:
Double Skin Façades (DSFs) are becoming increasingly popular architecture for commercial office buildings. Although DSFs are widely accepted to have the capacity to offer significant passive benefits and enable low energy building performance, there remains a paucity of knowledge with regard to their operation. Identification of the most determinant architectural parameters of DSFs is the focus of ongoing research. This paper presents an experimental and simulation study of a DSF installed on a commercial building in Dublin, Ireland. The DSF is south facing and acts to buffer the building from winter heat losses, but risks enhancing over-heating on sunny days. The façade is extensively monitored during winter months. Computational Fluid Dynamic (CFD) models are used to simulate the convective operation of the DSF. This research concludes DSFs as suited for passive, low energy architecture in temperature climates such as Ireland but identifies issues requiring attention in DSF design.
Resumo:
Tanpura string vibrations have been investigated previously using numerical models based on energy conserving schemes derived from a Hamiltonian description in one-dimensional form. Such time-domain models have the property that, for the lossless case, the numerical Hamiltonian (representing total energy of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in practice the Hamiltonian can be shown to be conserved within machine precision. Models of this kind can reproduce a jvari effect, which results from the bridge-string interaction. However the one-dimensional formulation has recently been shown to fail to replicate the jvaris strong dependence on the thread placement. As a first step towards simulations which accurately emulate this sensitivity to the thread placement, a twodimensional model is proposed, incorporating coupling of controllable level between the two string polarisations at the string termination opposite from the barrier. In addition, a friction force acting when the string slides across the bridge in horizontal direction is introduced, thus effecting a further damping mechanism. In this preliminary study, the string is terminated at the position of the thread. As in the one-dimensional model, an implicit scheme has to be used to solve the system, employing Newton's method to calculate the updated positions and momentums of each string segment. The two-dimensional model is proven to be energy conserving when the loss parameters are set to zero, irrespective of the coupling constant. Both frequency-dependent and independent losses are then added to the string, so that the model can be compared to analogous instruments. The influence of coupling and the bridge friction are investigated.
Resumo:
Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.
Resumo:
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
Resumo:
A practical method to achieve both decoupling and six polarisation states by employing the mode-based approach for a four-element antenna is presented. The eigenmode theory as well as a practical implementation scheme are presented. The resulting approach can operate with vertical, horizontal, slant +45°, slant -45°, right-hand circular polarisation, or left-hand circular polarisation. A prototype has been manufactured and measured results show good agreement with simulations.
Resumo:
The X-parameter based nonlinear modelling tools have been adopted as the foundation for the advanced methodology
of experimental characterisation and design of passive nonlinear devices. Based upon the formalism of the Xparameters,
it provides a unified framework for co-design of antenna beamforming networks, filters, phase shifters and
other passive and active devices of RF front-end, taking into account the effect of their nonlinearities. The equivalent
circuits of the canonical elements are readily incorporated in the models, thus enabling evaluation of PIM effect on the
performance of individual devices and their assemblies. An important advantage of the presented methodology is its
compatibility with the industry-standard established commercial RF circuit simulator Agilent ADS.
The major challenge in practical implementation of the proposed approach is concerned with experimental retrieval of the X-parameters for canonical passive circuit elements. To our best knowledge commercial PIM testers and practical laboratory test instruments are inherently narrowband and do not allow for simultaneous vector measurements at the PIM and harmonic frequencies. Alternatively, existing nonlinear vector analysers (NVNA) support X-parameter measurements in a broad frequency bands with a range of stimuli, but their dynamic range is insufficient for the PIM characterisation in practical circuits. Further opportunities for adaptation of the X-parameters methodology to the PIM
characterisation of passive devices using the existing test instruments are explored.
Resumo:
The principle aspects of passive intermodulation (PIM) characterisation in distributed printed circuits with cascaded lumped nonlinearities are presented. Mechanisms of PIM generations have been investigated experimentally and modelled using the formalism of X-parameters. The devised equivalent circuit models are applied to the analysis of microstrip lines with distributed and cascaded lumped sources of nonlinearity. The dynamic measurements have revealed that PIM generation rates in straight and meandered microstrip lines differ and significantly deviate from those expected for the respective discrete sources of nonlinearity. The obtained results indicate that multiple physical sources of nonlinearity contribute to PIM generation in printed circuits. Finally, it is demonstrated that the electrical discontinuities can have significant effect on the overall PIM response of the distributed passive circuits and cause PIM product leakage and parasitic coupling between isolated circuit elements.
Resumo:
This paper presents initial results of evaluating suitability of the conventional two-tone CW passive intermodulation (PIM) test for characterization of modulated signal distortion by passive nonlinearities in base station antennas and RF front-end. A comprehensive analysis of analog and digitally modulated waveforms in the transmission lines with weak distributed nonlinearity has been performed using the harmonic balance analysis and X-parameters in Advanced Design System (ADS) simulator. The nonlinear distortion metrics used in the conventional two-tone CW PIM test have been compared with the respective spectral metrics applied to the modulated waveforms, such as adjacent channel power ratio (ACPR) and error vector magnitude (EVM). It is shown that the results of two-tone CW PIM tests are consistent with the metrics used for assessment of signal integrity of both analog and digitally modulated waveforms.