123 resultados para Human potential
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1e5 pg/ml plasma and recoveries 91e115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA peptide markers and use of untargeted proteomic and metabolomic approaches.
Resumo:
flatoxins are fungal toxins that possess acute life threatening toxicity, carcinogenic properties and other potential chronic adverse effects. Dietary exposure to aflatoxins is considered a major public health concern, especially for subsistence farming communities in sub-Saharan Africa and South Asia, where dietary staple food crops such as groundnuts and maize are often highly contaminated with aflatoxin due to hot and humid climates and poor storage, together with low awareness of risk and lack of enforcement of regulatory limits. Biomarkers have been developed and applied in many epidemiological studies assessing aflatoxin exposure and the associated health effects in these high-risk population groups. This review discusses the recent epidemiological evidence for aflatoxin exposure, co-exposure with other mycotoxins and associated health effects in order to provide evidence on risk assessment, and highlight areas where further research is necessary. Aflatoxin exposure can occur at any stage of life and is a major risk factor for hepatocellular carcinoma, especially when hepatitis B infection is present. Recent evidence suggests that aflatoxin may be an underlying determinant of stunted child growth, and may lower cell-mediated immunity, thereby increasing disease susceptibility. However, a causal relationship between aflatoxin exposure and these latter adverse health outcomes has not been established, and the biological mechanisms for these have not been elucidated, prompting further research. Furthermore, there is a dearth of information regarding the health effects of co-exposure to aflatoxin with other mycotoxins. Recent developments of biomarkers provide opportunities for important future research in this area.
Resumo:
The food industry is moving towards the use of natural sweeteners such as those produced by Stevia rebaudiana due to the number of health and safety concerns surrounding artificial sweeteners. Despite the fact that these sweeteners are natural; they cannot be assumed safe. Steviol glycosides have a steroidal structure and therefore may have the potential to act as an endocrine disruptor in the body. Reporter gene assays (RGAs), H295R steroidogenesis assay and Ca(2+) fluorimetry based assays using human sperm cells have been used to assess the endocrine disrupting potential of two steviol glycosides: stevioside and rebaudioside A, and their metabolite steviol. A decrease in transcriptional activity of the progestagen receptor was seen following treatment with 25,000 ng/ml steviol in the presence of progesterone (157 ng/ml) resulting in a 31% decrease in progestagen response (p=<0.01). At the level of steroidogenesis, the metabolite steviol (500-25,000 ng/ml) increased progesterone production significantly by 2.3 fold when exposed to 10,000 ng/ml (p=<0.05) and 5 fold when exposed to 25,000 ng/ml (p=<0.001). Additionally, steviol was found to induce an agonistic response on CatSper, a progesterone receptor of sperm, causing a rapid influx of Ca(2+). The response was fully inhibited using a specific CatSper inhibitor. These findings highlight the potential for steviol to act as a potential endocrine disruptor.