159 resultados para Human Endothelial-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Periodontal ligament (PDL) cells are exposed to physical forces in vivo in response to mastication, parafunction, speech and orthodontic tooth movement. Although it has been shown that PDL cells perceive and respond directly to mechanical stimulation, the nature of the ion channels that mediate this mechanotransduction remain to be fully elucidated. The transient receptor potential (TRP) superfamily of ion channels is believed to play a critical role in sensory physiology, where they act as transducers for thermal, chemical and mechanical stimuli. Recent studies have shown that members of the vanilloid (TRPV) and ankyrin (TRPA) subfamilies encode mechanosensitive TRPs. The vanilloid family member TRPV4 is one such non selective calcium permeable cationic channel which has been shown to be activated by chemical ligands, hypotonicity, and mechanical stimuli. Objectives: The objective of the current study was to investigate functional expression of TRPV4 in cultured human PDL cells. Methods: Human PDL cells were grown in Dulbecco's Modified Eagle Medium with L-glutamine supplemented with 10% fetal bovine serum (FBS), 100UI/ml penicillin and 100μg/ml streptomycin. Cells in passage 4-6 were used in all experiments. TRPV4 functional expression was determined using ratiometric calcium imaging. Cultured cells were loaded with intracellular Ca2+ probe fura-2 and cells were then stimulated with the TRPV4 agonists, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), GSK1016790A or hypotonic solution. The TRPV4 antagonist RN 1734 was used to block the corresponding agonist responses. Results: PDL fibroblasts responded to application of TRPV4 agonists and hypotonic stimuli by an increase in intracellular calcium which was attenuated in the presence of the TRPV4 antagonist. Conclusions: We have shown for the first time the functional expression of the mechanosensitive TRPV4 channel in human PDL cells. The molecular identity and mechanisms of activation of mechanosensitive TRP channels in PDL cells merit further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substance P (SP) is a member of the structurally related family of neuropeptides known as the tachykinins. In addition to neurotransmitter roles, the tachykinins are also known to modulate local inflammation which depends on signalling between the neuropeptide molecules and target cells and tissues. SP mediates its effects through a specific receptor, known as the substance P receptor or the neurokinin 1 (NK-1) receptor. The NK-1 receptor is a G-protein associated integral membrane protein and although it has been studied in a wide range of tissues, to date there has been no published data on the localisation of the NK-1 receptor in human gingival tissue. Objective: The aim of this study was to examine the distribution of the NK-1 receptor in human gingival tissue using immunocytochemistry. Method: Gingival tissue was obtained from patients undergoing periodontal surgery. Tissue was fixed in paraformaldehyde and embedded in wax for sectioning. Sections were dewaxed in xylene and then rehydrated in alcohols and phosphate buffered saline. Rehydrated sections were probed with rabbit polyclonal antibody to human NK-1 receptor which was subsequently detected using anti-rabbit horseradish peroxidase conjugate and diaminobenzidine as substrate. Results: Immunocytochemistry revealed that the NK-1 receptor was distributed along nerve fibres and blood vessel endothelial cells, suggesting these areas are main targets for the actions of SP via the NK-1 receptor. Conclusion: This is the first immunocytochemical report of NK-1 receptors in human gingival tissue and provides evidence for possible NK-1 mediated biological effects of SP in human gingival tissue from periodontitis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Circulating Angiogenic Cells (CACs) promote revascularization of ischemic tissues although their underlying mechanism of action and the consequences of delivering varying numbers of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation.

METHODS & RESULTS: CACs at low (2x10(5)cells/ml) and mid (2x10(6)cells/ml) cellular densities significantly enhanced endothelial cell (EC) tube formation in vitro, while high density CACs (2x10(7)cells/ml) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and high density CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the high density CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo Importantly, our data revealed that the anti-angiogenic effect observed in high density CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to high density CACs. In addition, we confirmed that PTX3 inhibits FGF2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects.

CONCLUSIONS: Endothelium, when exposed to high density CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischemic disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer cells are insensitive to many signals that inhibit growth of untransformed cells. Here, we show that primary human epithelial cells expressing human papillomavirus (HPV) type-16 E6/E7 bypass arrest caused by the DNA-damaging drug adriamycin and become tetraploid. To determine the contribution of E6 in the context of E7 to the resistance of arrest and induction of tetraploidy, we used an E6 mutant unable to degrade p53 or RNAi targeting p53 for knockdown. The E6 mutant fails to generate tetraploidy; however, the presence of E7 is sufficient to bypass arrest while the p53 RNAi permits both arrest insensitivity and tetraploidy. We published previously that polo-like kinase 1 (Plk1) is upregulated in E6/E7-expressing cells. We observe here that abnormal expression of Plk1 protein correlates with tetraploidy. Using the p53 binding-defective mutant of E6 and p53 RNAi, we show that p53 represses Plk1, suggesting that loss of p53 results in tetraploidy through upregulation of Plk1. Consistent with this hypothesis, overexpression of Plk1 in cells generates tetraploidy but does not confer resistance to arrest. These results support a model for transformation caused by HPV-16 where bypass of arrest and tetraploidy are separable consequences of p53 loss with Plk1 required only for the latter effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: A number of cytotoxic chemotherapy agents tested at low concentrations show antiangiogenic properties with limited cytotoxicity, e.g., cyclophosphamide, tirapazamine, and mitoxantrone. AQ4N is a bioreductive alkylaminoanthraquinone that is cytotoxic when reduced to AQ4; hence, it can be used to target hypoxic tumor cells. AQ4N is structurally similar to mitoxantrone and was evaluated for antiangiogenic properties without the need for bioreduction.

Experimental Design:The effect of AQ4N and fumagillin on human microvascular endothelial cells (HMEC-1) was measured using a variety ofin vitro assays, i.e., 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide, wound scrape, tubule formation, rat aortic ring, and invasion assays. Low-dose AQ4N (20 mg/kg) was also given in vivo to mice bearing a tumor in a dorsal skin flap.

Results:AQ4N (10-11to10-5mol/L) hadno effect on HMEC-1viability. AQ4N (10-9to10-5mol/L) caused a sigmoidal dose-dependent inhibition of endothelial cell migration in the wound scrape model. Fumagillin showed a similar response over a lower dose range (10-13 to 10-9 mol/L); however, the maximal inhibition was less (25% versus 43% for AQ4N). AQ4N inhibited HMEC-1 cell contacts on Matrigel (10-8 to 10-5 mol/L), HMEC-1 cell invasion, and sprouting in rat aorta explants. Immunofluorescence staining with tubulin, vimentim, dynein, and phalloidin revealed that AQ4N caused disruption to the cell cytoskeleton. When AQ4N (20 mg/kg) was given in vivo for 5 days, microvessels disappeared in LNCaP tumors grown in a dorsal skin flap.

Conclusions:This combination of assays has shown that AQ4N possesses antiangiogenic effects in normoxic conditions, which could potentially contribute to antitumor activity

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radiation therapy is a treatment modality routinely used in cancer management so it is not unexpected that radiation-inducible promoters have emerged as an attractive tool for controlled gene therapy. The human tissue plasminogen activator gene promoter (t-PA) has been proposed as a candidate for radiogenic gene therapy, but has not been exploited to date. The purpose of this study was to evaluate the potential of this promoter to drive the expression of a reporter gene, the green fluorescent protein (GFP), in response to radiation exposure. METHODS: To investigate whether the promoter could be used for prostate cancer gene therapy, we initially transfected normal and malignant prostate cells. We then transfected HMEC-1 endothelial cells and ex vivo rat tail artery and monitored GFP levels using Western blotting following the delivery of single doses of ionizing radiation (2, 4, 6 Gy) to test whether the promoter could be used for vascular targeted gene therapy. RESULTS: The t-PA promoter induced GFP expression up to 6-fold in all cell types tested in response to radiation doses within the clinical range. CONCLUSIONS: These results suggest that the t-PA promoter may be incorporated into gene therapy strategies driving therapeutic transgenes in conjunction with radiation therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinestatin, isolated from the skin of the Chinese toad, Bombina maxima, was the first bradykinin B2 receptor antagonist identified in amphibians. Molecular cloning established that it is co-encoded with the bradykinin-related peptide, maximakinin, within one of several skin kininogens. To examine other species within the genus Bombina for the presence of structural homologues of kinestatin, we subjected skin secretion of the toad, Bombina orientalis, to HPLC fractionation with subsequent bioassay of fractions for antagonism of bradykinin activity using an isolated rat tail artery smooth muscle preparation. A single fraction was located that inhibited bradykinin-induced relaxation of rat arterial smooth muscle and MALDI-TOF analysis of this fraction revealed that it contained a single peptide of molecular mass 3198.5 Da. Further primary structural analysis of this peptide showed that it was a 28-mer with an N-terminal Asp (D) residue and a C-terminal Val (V) residue that was amidated. The peptide was named DV-28 amide in accordance with these primary structural attributes. Synthetic DV-28 amide replicated the observed bradykinin antagonistic effect within the smooth muscle bioassay in a dose-dependent manner. In addition, it was observed to inhibit the proliferation of human microvessel endothelial cells (HMECs) as assessed by MTT assay. Bioinformatic analysis revealed that DV-28 amide was, like kinestatin, co-encoded with a bradykinin receptor agonist on one of two skin kininogens identified in B. orientalis. DV-28 amide thus represents a novel class of bradykinin antagonist from skin secretions of bombinid toads that appear to be a rich source of such novel peptides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.

METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.

CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Erythropoiesis stimulating agents (ESAs) are widely used to treat anaemia but concerns exist about their potential to promote pathological angiogenesis in some clinical scenarios. In the current study we have assessed the angiogenic potential of three ESAs; epoetin delta, darbepoetin alfa and epoetin beta using in vitro and in vivo models.

Methodology/Principal Findings: The epoetins induced angiogenesis in human microvascular endothelial cells at high doses, although darbepoetin alfa was pro-angiogenic at low-doses (1-20 IU/ml). ESA-induced angiogenesis was VEGF-mediated. In a mouse model of ischaemia-induced retinopathy, all ESAs induced generation of reticulocytes but only epoetin beta exacerbated pathological (pre-retinal) neovascularisation in comparison to controls (p<0.05). Only epoetin delta induced a significant revascularisation response which enhanced normality of the vasculature (p<0.05). This was associated with mobilisation of haematopoietic stem cells and their localisation to the retinal vasculature. Darbepoetin alfa also increased the number of active microglia in the ischaemic retina relative to other ESAs (p<0.05). Darbepoetin alfa induced retinal TNF alpha and VEGF mRNA expression which were up to 4 fold higher than with epoetin delta (p<0.001).

Conclusions: This study has implications for treatment of patients as there are clear differences in the angiogenic potential of the different ESAs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Advanced JAX (TM) Bone Void Filler System (AJBVFS) is a novel bone graft material manufactured by Smith and Nephew Orthopaedics Ltd. and comprises beta tri-calcium phosphate granules with carboxymethylcellulose (CMC) gel as a handling agent. This study investigated the potential, in vitro, of the AJBVFS to function as a delivery system for cell therapy to enhance healing of bone defects. The attachment of rabbit bone marrow stromal cells (rbBMSCs), human BMSCs (hBMSCs) and human bone-derived cells (hBDCs) to JAX (TM) granules and the effect of CMC gel on cell proliferation and differentiation were investigated. There were slight species differences in the number and morphology of cells attached on the JAX (TM) granules with less rbBMSC attachment than human. All cells tolerated the presence of CMC gel and a reduction in cell number was only seen after longer exposure to higher gel concentrations. Low concentrations of CMC gel enhanced proliferation, alkaline phosphatase (ALP) expression and ALP activity in human cells but had no effect on rbBMSC. This study suggests that AJBVFS is an appropriate scaffold for the delivery of osteogenic cells and the addition of CMC gel as a handling agent promotes osteogenic proliferation and differentiation and is therefore likely to encourage bone healing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Several physiological studies in recent years have convincingly demonstrated increased clearance of intravascular protein tracers by several different tissues, including the retina, during early diabetes and galactosemia in the rat. This change has been described as a consequence of increased permeation, although vascular leakage has not been demonstrated, and the fate of such tracers remains unelucidated. EXPERIMENTAL DESIGN: A pilot study in this laboratory showed no evidence of vascular leakage but suggested increased endocytosis of horseradish peroxidase (HRP) by retinal vascular endothelial cells (RVECs) in early diabetes. We therefore quantified RVEC endocytosis in normal, streptozotocin (STZ)-treated nondiabetic and STZ-diabetic rats using the design-based stereology method of "vertical sections." A duration of diabetes (6 weeks) was chosen to approximate the time period in which other workers have demonstrated increased protein permeation of the retina. RESULTS: After a 20-minute exposure to the tracer, HRP reaction product was observed in small vesicular and tubular endosomes and larger multivesicular bodies of the RVECs. Stereological analysis revealed a 6.5-fold increase in the volume of HRP-containing organelles in the RVECs of diabetic rats compared with STZ-treated nondiabetics or normal controls. None of the animals in this study showed HRP reaction product outside the retinal vascular endothelium. CONCLUSIONS: A highly significant increase in RVEC endocytosis occurs in early diabetes. Increased RVEC endocytosis may contribute to the observed clearance of intravascular protein tracers by the retina during early diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu?Pro at position 2 and Phe?Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20µM and 150µM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His?Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5µM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His?Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40µm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.