218 resultados para Functional


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study determines whether the novel designer biomimetic vector (DBV) can condense anddeliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previouslyshown the benefits of iNOS for cancer gene therapy but the stumbling block to future development hasbeen the delivery system.The DBV was expressed, purified and complexed with the iNOS gene. The particle size and chargewere determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticleswas quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed viaWestern blotting and Griess test.The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100 nm. Transfectionwith the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20%clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18M.We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeuticeffect. There is significant cytotoxicity coupled with evidence of a bystander effect. We concludethat the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modiolarca tumida (Hanley, 1843) is a member of the sub-family Crenellinae (Mytilidae). The preferred habitat of the species is the test of certain ascidians. The shell is dorsally flattened, which prevents it from cutting into the test during dorso-ventral contraction of the byssal retractors. The use of the byssus enables it to surround itself completely with host tissue. Adoption of the feeding posture involves the anterior-posterior contraction of the byssal retractors, which elevates the posterior margin above the host's surface using the anterior margin as the fulcrum against the host. Modiolarca tumida are attracted by the tunicin of the host, a process probably facilitated by the host's feeding currents. The smallest individuals are found round the oral aperture. Colonization of other parts of the host may result from surface migration as M. tumida can be highly mobile, crawling by means of the very extensible foot. It is during this process that individuals may be swept away in local currents and be forced to adopt a free-living existence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton NMR spectra of aryl n-propyl sulfides gave rise to what may appear to be first-order proton NMR spectra. Upon oxidation to the corresponding sulfone, the spectra changed appearance dramatically and were clearly second-order. A detailed analysis of these second-order spectra, in the sulfone series, provided vicinal coupling constants which indicated that these compounds had a moderate preference for the anti-conformer, reflecting the much greater size of the sulfone over the sulfide. It also emerged, from this study, that the criterion for observing large second-order effects in the proton NMR spectra of 1,2-disubstituted ethanes was that the difference in vicinal coupling constants must be large and the difference in geminal coupling constants must be small. n-Propyl triphenylphosphonium bromide and 2-trimethylsilylethanesulfonyl chloride, and derivatives thereof, also exhibited second-order spectra, again due to the bulky substituents. Since these spectra are second-order due to magnetic nonequivalence of the nuclei in question, not chemical shifts, the proton spectra are perpetually second-order and can never be rendered first-order by using higher field NMR spectrometers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:

Increased superoxide anion production increases oxidative stress and reduces nitric oxide bioactivity in vascular disease states. NAD(P)H oxidase is an important source of superoxide in human blood vessels, and some studies suggest a possible association between polymorphisms in the NAD(P)H oxidase CYBA gene and atherosclerosis; however, no functional data address this hypothesis. We examined the relationships between the CYBA C242T polymorphism and direct measurements of superoxide production in human blood vessels.

METHODS AND RESULTS:

Vascular NAD(P)H oxidase activity was determined in human saphenous veins obtained from 110 patients with coronary artery disease and identified risk factors. Immunoblotting, reverse-transcription polymerase chain reaction, and DNA sequencing showed that p22phox protein, mRNA, and 242C/T allelic variants are expressed in human blood vessels. Vascular superoxide production, both basal and NADH-stimulated, was highly variable between patients, but the presence of the CYBA 242T allele was associated with significantly reduced vascular NAD(P)H oxidase activity, independent of other clinical risk factors for atherosclerosis.

CONCLUSIONS:

Association of the CYBA 242T allele with reduced NAD(P)H oxidase activity in human blood vessels suggests that genetic variation in NAD(P)H oxidase components may play a significant role in modulating superoxide production in human atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical capacitors, also known as supercapacitors, are becoming increasingly important components in energy storage, although their widespread use has not been attained due to a high cost/ performance ratio. Fundamental research is contributing to lowered costs through the engineering of new materials. Currently the most viable materials used in electrochemical capacitors are biomassderived and polymer-derived activated carbons, although other carbon materials are useful research tools. Metal oxides could result in a step change for electrochemical capacitor technology and is an exciting area of research. The selection of an appropriate electrolyte and electrode structure is fundamental in determining device performance. Although there are still many uncertainties in understanding the underlying mechanisms involved in electrochemical capacitors, genuine progress continues to be made. It is argued that a large, collaborative international research programme is necessary to fully develop the potential of electrochemical capacitors.