192 resultados para Eye artificial
Resumo:
A giant retinal tear is a full-thickness retinal break that extends circumferentially around the retina for 90 degrees or more in the presence of a posteriorly detached vitreous. It causes significant visual morbidity from retinal detachment and proliferative vitreoretinopathy. The fellow eye of patients who have had a spontaneous giant retinal tear has an increased risk of developing a giant retinal tear, a retinal detachment or both. Interventions such as 360-degree encircling scleral buckling, 360-degree cryotherapy and 360-degree laser photocoagulation have been advocated by some ophthalmologists as prophylaxis for the fellow eye against the development of a giant retinal tear and/or a retinal detachment, or to prevent its extension. To evaluate the effectiveness of prophylactic 360-degree interventions in the fellow eye of patients with unilateral giant retinal tear to prevent the occurrence of a giant retinal tear, a retinal detachment or both. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 11), MEDLINE (January 1950 to December 2011), EMBASE (January 1980 to December 2011), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to December 2011), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 6 December 2011. In addition, we searched the proceedings of the Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO) up to 2008 for information about other relevant studies. Prospective randomised controlled trials (RCTs) comparing one prophylactic treatment for fellow eyes of patients with giant retinal tear against observation (no treatment) or another form of prophylactic treatment. In the absence of RCTs, we planned to discuss case-control studies that met the inclusion criteria but we would not conduct a meta-analysis using these studies. We did not find any studies that met the inclusion criteria for the review and therefore no assessment of methodological quality or meta-analysis could be performed. No studies met the inclusion criteria for this review. No strong evidence in the literature was found to support or refute prophylactic 360-degree treatments to prevent a giant retinal tear or a retinal detachment in the fellow eye of patients with unilateral giant retinal tears.
Resumo:
Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References
[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.
Resumo:
The traditional training of surgeons focused exclusively on developing knowledge, clinical expertise, and technical (surgical) skills. However, analyses of the reasons for adverse events in surgery have revealed that many underlying causes originate from behavioural or non-technical aspects of performance (eg, poor communication among members of the surgical team) rather than from a lack of surgical (ie, technical) skills. Therefore, technical skills appear to be necessary but not sufficient to ensure patient safety. Paying attention to non-technical skills, such as team working, leadership, situation awareness, decision making, and communication, will increase the likelihood of maintaining high levels of error-free performance. Identification and training of non-technical skills has been developed for high-risk careers, such as civil aviation and nuclear power. Only recently, training in non-technical skills has been adopted by the surgical world and anaesthetists. Non-technical skills need to be tailored to the environment where they are used, and eye surgery has some substantial differences compared with other surgical areas, for example, high volume of surgery, use of local anaesthetics, and very sophisticated equipment. This review highlights the need for identification of the non-technical skills relevant to eye surgeons and promotion of their use in the training of eye surgeons.
Resumo:
Intertwining planar spirals arranged in doubly periodic arrays enables a substantially subwavelength response of the unit cell smaller than 1/40 of wavelength with large fractional bandwidths. These properties are important for application at low frequencies, conformal curved surfaces, or with compact radiators. It is shown that interleaving counter-wound spiral arms extended into adjacent unit cells dramatically increase the array equivalent capacitance while reducing the inductance. A coplanar waveguide (CPW) model has been developed to analytically estimate the equivalent capacitance and inductance of intertwined spiral array elements in terms of their geometrical parameters. The proposed CPW model is shown to provide an accurate prediction of the fundamental resonance frequency and can be instrumental in the design of the arrays for a specified frequency response. © 2012 IEEE.
Resumo:
The features of artificial surfaces composed of doubly periodic patterns of interwoven planar conductors are discussed. The free-standing intertwined quadrifilar spirals and modified Brigid's crosses are presented as illustrative examples to demonstrate the highly stable angular reflection and transmittance response with low cross-polarisation and a broad fractional bandwidth. The main mechanisms contributing to the substantially sub-wavelength response of these arrays are discussed showing that interweaving their conductor patterns provides concurrent control of both the equivalent capacitance and inductance of the unit cell. The effects of dielectric substrate and conductor thickness on the properties of intertwined spiral and modified Brigid's cross arrays are discussed to provide insight in the effect of the structure parameters on array performance.
Resumo:
The general properties of a frequency selective surface loaded with negative impedance converter (NIC)-based active loads are discussed from a theoretical perspective.The stability problem associated with NIC circuits embedded in artificial magnetic conductor (AMC) and AMC absorber applications is studied using pole-zero analysis. The requirements and constraints for achieving stable operation with enhanced bandwidth using negative capacitance as realized by a floating NIC network are derived. Furthermore, it is shown that it is nearly impossible to simultaneously implement a negative capacitor and a negative inductor to such structures. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:2111–2114, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27019
Resumo:
Paradoxical kinesia describes the motor improvement in Parkinson's disease (PD) triggered by the presence of external sensory information relevant for the movement. This phenomenon has been puzzling scientists for over 60 years, both in neurological and motor control research, with the underpinning mechanism still being the subject of fierce debate. In this paper we present novel evidence supporting the idea that the key to understanding paradoxical kinesia lies in both spatial and temporal information conveyed by the cues and the coupling between perception and action. We tested a group of 7 idiopathic PD patients in an upper limb mediolateral movement task. Movements were performed with and without a visual point light display, travelling at 3 different speeds. The dynamic information presented in the visual point light display depicted three different movement speeds of the same amplitude performed by a healthy adult. The displays were tested and validated on a group of neurologically healthy participants before being tested on the PD group. Our data show that the temporal aspects of the movement (kinematics) in PD can be moderated by the prescribed temporal information presented in a dynamic environmental cue. Patients demonstrated a significant improvement in terms of movement time and peak velocity when executing movement in accordance with the information afforded by the point light display, compared to when the movement of the same amplitude and direction was performed without the display. In all patients we observed the effect of paradoxical kinesia, with a strong relationship between the perceptual information prescribed by the biological motion display and the observed motor performance of the patients. © 2013 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: In experimental models of retinopathy of prematurity (ROP), a vasoproliferative disorder of the retina, retinal lesions are usually assessed by morphological examination. However, studies suggest that the polyamine system may be useful in monitoring proliferation processes. For this reason, polyamine concentrations in rat erythrocytes (RBC) and the regulation of polyamine system in rat eyes under the conditions relevant to ROP were investigated. METHODS: Newborn Wistar rats were reared in room air (control) or exposed first to hyperoxia (60% or 80% oxygen, 2 weeks) and then to normoxia (relative hypoxia, 1 or 2 weeks). Blood was collected from orbital vessels at 2 weeks of age and before death. Polyamine system-related enzyme activities were measured in retina and lens with radioassays. Polyamines were quantified by fluorometry after extraction, dansylation and HPLC separation. RESULTS: Oxygen (80% only) significantly decreased RBC polyamine concentrations, which then markedly increased after rats were transferred for a week to normal air, suggesting retardation of growth processes and compensatory stimulation, respectively. However, polyamine system changes in the rat eye were not so pronounced. Enzyme activities and polyamine concentrations tended to be lower in retina after hyperoxia and were only slightly higher, with the exception of ornithine decarboxylase, after a subsequent 1 week of normoxia. In litters subjected to normoxia for longer periods no changes were found. CONCLUSION: The transient and short-lived alteration in polyamine metabolism, especially in the eye, suggests that exposure of newborn rats to high oxygen supplementation followed by normoxia does not necessarily result in marked retinopathy.
Resumo:
Plaques constructed with 125I were used to irradiate the sites of perforating ocular injuries in rabbits. An approximate dose of 16Gy given over a period of 6 days was shown to significantly reduce intraocular cellular proliferation when irradiation was commenced within 24 hours after injury. If irradiation was delayed until day 5, this reduction in cellular proliferation and intraocular membrane formation did not occur. Smaller radiation doses of approximately 6Gy given within 24 hours post-injury and administered over 6 days also reduced the extent of cellular proliferation but was not as effective as the 16Gy dose.
Resumo:
Purpose: To evaluate the clinical and histological side effects of a prototype stereotactic radiotherapy system delivering microcollimated external beam radiation through pars plana in porcine eyes.
Methods: Five Yucatan mini-swine (10 eyes) were randomized to five treatment groups. Eight eyes were dosed with X-ray radiation on Day 1, and two eyes served as untreated controls. Treated eyes received doses up to 60 Gy to the retina and up to 130 Gy to the sclera using single or overlapping beams. The treatment beams were highly collimated such that the diameter was approximately 2.5 mm on the sclera and 3 mm on the retinal surface. Fundus photography, fluorescein angiography (FA), and spectral domain optical coherence tomography (SD-OCT) were obtained on days 7, 30, 60, and 110. Images were examined by a masked grader and evaluated for abnormalities. Animals were sacrificed on day 111 and gross and histopathological analysis was conducted.
Results: Histological and gross changes to eye structures including conjunctiva and lens were minimal at all doses. Fundus, FA, and SD-OCT of the targeted region failed to disclose any abnormality in the control or 21 Gy treated animals. In the 42 and 60 Gy animals, hypopigmented spots were noted after treatment on clinical exam, and corresponding hyperfluorescent staining was seen in late frames. No evidence of choroidal hypoperfusion was seen. The histological specimens from the 60 Gy animals showed photoreceptor loss and displacement of cone nuclei.
Conclusion: Transcleral stereotactic radiation dosing in porcine eyes can be accomplished with no significant adverse events as doses less than 42 Gy.
Resumo:
This opportune case study describes visual and stepping behaviours of an 87 year old female (P8), both prior to, and following two falls. Before falling, when asked to walk along a path containing two stepping guides positioned before and after an obstacle, P8 generally visually fixated the first stepping guide until after foot contact inside it. However, after falling P8 consistently looked away from the stepping guide before completing the step into it in order to fixate the upcoming obstacle in her path. The timing of gaze redirection away from the target (in relation to foot contact inside it) correlated with absolute stepping error. No differences in eyesight, cognitive function, or balance were found between pre- and post-fall recordings. However, P8 did report large increases in fall-related anxiety and reduced balance confidence, supporting previously suggested links between anxiety/increased fear or falling and maladaptive visual/stepping behaviours. The results represent a novel insight into how psychological and related behavioural factors can change in older adults following a fall, and provide a possible partial rationalisation for why recent fallers are more likely to fall again in the following 12 months. These findings highlight novel possibilities for falls prevention and rehabilitation.
Resumo:
This paper presents an approach to improve the detection of an artificial target with low radar cross-section in presence of clutter. The target proposed in the paper modulates the phase response of the circularly polarized incident signal by means of rotation. The same physical phenomenon can be used to steer the modulated response in a non-specular direction. The bi-static measurements of the response of the target have demonstrated good agreement with theoretical prediction as well as with full-wave simulation.
Resumo:
Evaluation of: Brown DM, Heier JS, Ciulla T et al. Primary end point results of a Phase II study of vascular endothelial growth factor trap-eye in wet age-related macular degeneration. Ophthalmology 118(6), 1089-1097 (2011); Heier JS, Boyer D, Nguyen QD et al. The 1-year results of CLEAR-IT 2, a Phase 2 study of vascular endothelial growth factor trap-eye dosed as-needed after 12-week fixed dosing. Ophthalmology 118(6), 1098-1106 (2011). Age-related macular degeneration is the most common cause of blindness in older adults in western countries, and is likely to become the largest cause of irreversible sight loss in the developing world. Treatments such as ranibizumab and bevacizumab that inhibit VEGF have improved visual outcomes markedly. Controlled trials and clinical experience have shown that the best outcomes are achieved when monthly treatment has been administered over 2 years. This poses a significant burden on health providers and patients. A novel inhibitor of VEGF, VEGF Trap-Eye, which allows less frequent dosing without loss of efficacy, has emerged as a potential treatment. CLEAR-IT 2 was a prospective randomized Phase II trial designed to assess the safety, tolerability and the anatomic and visual effects of repeated treatments with a range of doses of VEGF Trap-Eye. Impressive anatomic and visual improvements were noted with no safety concerns. © 2011 Expert Reviews Ltd.