141 resultados para Espinhaço mountain range
Resumo:
We study the long-range quantum correlations in the anisotropic XY model. By first examining the thermodynamic limit, we show that employing the quantum discord as a figure of merit allows one to capture the main features of the model at zero temperature. Furthermore, by considering suitably large site separations we find that these correlations obey a simple scaling behavior for finite temperatures, allowing for efficient estimation of the critical point. We also address ground-state factorization of this model by explicitly considering finite-size systems, showing its relation to the energy spectrum and explaining the persistence of the phenomenon at finite temperatures. Finally, we compute the fidelity between finite and infinite systems in order to show that remarkably small system sizes can closely approximate the thermodynamic limit.
Resumo:
We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays.
Resumo:
We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a contract with NASA.
Resumo:
We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.
Resumo:
Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus), previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island.
Resumo:
A complete nucleotide sequence of the new Pseudomonas aeruginosa Luz24likevirus phiCHU was obtained. This virus was shown to have a unique host range whereby it grew poorly on the standard laboratory strain PAO1, but infected 26 of 46 clinical isolates screened, and strains harboring IncP2 plasmid pMG53. It was demonstrated that phiCHU has single strand interruptions in its genome. Analysis of the phiCHU genome also suggested that recombination event(s) participated in the evolution of the leftmost portion of the genome, presumably encoding early genes.
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
Using low-energy electron-diffraction (LEED) formalism, we demonstrate theoretically that LEED I-V spectra are characterized mainly by short-range order. We also show experimentally that diffuse LEED (DLEED) I-V spectra can be accurately measured from a disordered system using a video-LEED system even at very low coverage. These spectra demonstrate that experimental DLEED I-V spectra from disordered systems may be used to determine local structures. As an example, it is shown that experimental DLEED I-V spectra from K/Co {1010BAR} at potassium coverages of 0.07, 0.1, and 0.13 monolayer closely resemble calculated and experimental LEED I-V spectra for a well-ordered Co{1010BAR}-c(2X2)-K superstructure, leading to the conclusion that at low coverages, potassium atoms are located in the fourfold-hollow sites and that there is no large bond-length change with coverage.
Resumo:
Three photocatalyst inks based on the redox dyes, Resazurin (Rz), Basic Blue 66 (BB66) and Acid Violet 7 (AV7), are used to assess the photocatalytic activities of a variety of different materials, such as commercial paint, tiles and glass and laboratory made samples of sol–gel coated glass and paint, which collectively exhibit a wide range of activities that cannot currently be probed by any one of the existing ISO tests. Unlike the ISO tests, the ink tests are fast (typically <10 min), simple to employ and inexpensive. Previous work indicates that the Rz ink test at least correlates linearly with other photocatalytic tests such as the photomineralisation of stearic acid. The average time to bleach 90% of the key RGB colour component of the ink, red for Rz and BB66 inks and green for AV7 ink, is determined, ttb(90), for eight samples of each of the different materials tested. Five laboratories conducted the tests and the results revealed an average repeatability and reproducibility of: ca. 11% and ca 21%, respectively, which compare well with those reported for the current ISO tests. Additional work on commercial self-cleaning glass using an Rz ink showed that the change in the red component of the RGB image of the ink correlated linearly with that of the change of absorbance at 608 nm, as measured using UV/vis spectroscopy, and the change in the a* component of the Lab colour analysis of the ink, as measured using diffuse reflectance spectroscopy. As a consequence, all three methods generate the same ttb(90). The advantages of the RGB digital image analysis method are discussed briefly.
Resumo:
The objective of this study is to provide an alternative model approach, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of room temperature ionic liquids (in short as ILs) [C n-mim] [NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity over a wide range of temperatures and more complex viscosity compositions, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. © 2010 IEEE.
Resumo:
To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3-34%. © 1995 Kluwer Academic Publishers.
Resumo:
Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.
Resumo:
Transport accounts for 22% of greenhouse gas emissions in the United Kingdom and cars are expected tomore than double by 2050. Car manufacturers are continually aiming for a substantially reduced carbonfootprint through improved fuel efficiency and better powertrain performance due to the strict EuropeanUnion emissions standards. However, road tax, not just fuel efficiency, is a key consideration of consumerswhen purchasing a car. While measures have been taken to reduce emissions through stricter standards, infuture, alternative technologies will be used. Electric vehicles, hybrid vehicles and range extended electricvehicles have been identified as some of these future technologies. In this research a virtual test bed of aconventional internal combustion engine and a range extended electric vehicle family saloon car were builtin AVL’s vehicle and powertrain system level simulation tool, CRUISE, to simulate the New EuropeanDrive Cycle and the results were then soft-linked to a techno-economic model to compare the effectivenessof current support mechanisms over the full life cycle of both cars. The key finding indicates that althoughcarbon emissions are substantially reduced, switching is still not financially the best option for either theconsumer or the government in the long run.