138 resultados para ENZYME IMMUNOASSAY
Resumo:
Background: Noroviruses (NoVs) are the most common cause of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and were recently identified as a leading cause of travelers' diarrhea (TD) in US and European travelers to Mexico, Guatemala, and India.
Methods: Serum and diarrheic stool samples were collected from 75 US student travelers to Cuernavaca, Mexico, who developed TD. NoV RNA was detected in acute diarrheic stool samples using reverse transcription-polymerase chain reaction (RT-PCR). Serology assays were performed using GI.1 Norwalk virus (NV) and GII.4 Houston virus (HOV) virus-like particles (VLPs) to measure serum levels of immunoglobulin A (IgA) and IgG by dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA); serum IgM was measured by capture enzyme-linked immunosorbent assay (ELISA), and the 50% antibody-blocking titer (BT50 ) was determined by a carbohydrate-blocking assay.
Results: NoV infection was identified in 12 (16%; 9 GI-NoV and 3 GII-NoV) of 75 travelers by either RT-PCR or fourfold or more rise in antibody titer. Significantly more individuals had detectable preexisting IgA antibodies against HOV (62/75, 83%) than against NV (49/75, 65%) (p = 0.025) VLPs. A significant difference was observed between NV- and HOV-specific preexisting IgA antibody levels (p = 0.0037), IgG (p = 0.003), and BT50 (p = <0.0001). None of the NoV-infected TD travelers had BT50 > 200, a level that has been described previously as a possible correlate of protection.
Conclusion: We found that GI-NoVs are commonly associated with TD cases identified in US adults traveling to Mexico, and seroprevalence rates and geometric mean antibody levels to a GI-NoV were lower than to a GII-NoV strain.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including cystic fibrosis (CF) however, its detection and quantification in biological samples is confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes, resulting in an over-estimation of the target protease. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel immunoassay (NE-Tag ELISA), incorporating an activity dependent ProteaseTag™ and a specific antibody step, which is selective and specific for the capture of active NE. The objective of this study was to clinically validate NE-Tag ELISA for the detection of active NE in sputum from CF patients. Sputum (n=45) was recovered from CF patients hospitalised for acute exacerbation. Sol was recovered and analysed for NE activity using the NE-Tag ELISA and two fluorogenic substrate-based assays [1. Suc-AAPV-AMC (Sigma) and 2. InnozymeTM Immunocapture assay (Calbiochem)]. NE activity between assays and with a range of clinical parameters was correlated.A highly significant correlation was shown between assays. NE activity (NE-Tag) further correlated appropriately with clinical parameters: inversely with FEV1 (p = 0.036) and positively with CRP (p = 0.035), neutrophils and total white cell counts (p < 0.001). The InnozymeTM assay showed similar correlations with the clinical parameters (with the exception of CRP). No correlations with any of the clinical parameters were observed when NE was measured using the standard fluorogenic substrate.
Resumo:
A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.
Resumo:
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Resumo:
Despite the advances in prostate cancer diagnosis and treatment, current therapies are not curative in a significant proportion of patients. Gene-directed enzyme prodrug therapy (GDEPT), when combined with radiation therapy, could improve the outcome of treatment for prostate cancer, the second leading cause of cancer death in the western world. GDEPT involves the introduction of a therapeutic transgene, which can be targeted to the tumour cells. A prodrug is administered systemically and is converted to its toxic form only in those cells containing the transgene, resulting in cell kill. This review will discuss the clinical trials which have investigated the potential of GDEPT at various stages of prostate cancer progression. The advantages of using GDEPT in combination with radiotherapy will be examined, as well as some of the recent advances which enhance the potential utility of GDEPT.
Resumo:
The present invention relates to an isolated nucleotide sequence and corresponding polypeptide derived from the nitrile-metabolising Pantoea strain deposited under NCIMB 41854. Said isolated polypeptide acts as a nitrilase and the invention extends to a process for producing a carboxylic acid using said isolated polypeptide to metabolise nitriles such as 3-hydroxyglutaronitrile, 3-hydroxybutyronitrile and 3- hydroxy-phenylpropionitrile to form corresponding carboxylic acids.
Resumo:
A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.
Resumo:
AIM: In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae.
METHODS: The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood.
RESULTS: Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation.
CONCLUSION: The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation.
Resumo:
Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.