275 resultados para Defined Vascular Depression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Non-invasive diagnosis of acute myocardial infarction (AMI) associated with significant left main stem (LMS) stenosis remains challenging.

Methods: Consecutive patients presenting with acute ischaemic-type chest pain from 2000 to 2010 were analysed. Entry criteria: 12-lead ECG and Body Surface Potential Map (BSPM) at presentation, cardiac troponin T (cTnT) =12?h and coronary angiography during admission. cTnT =0.03?µg/l defined AMI. ECG abnormalities assessed: STEMI by Minnesota criteria; ST elevation (STE) aVR =0.5?mm; ST depression (STD) =0.5?mm in =2 contiguous leads (CL); T-wave inversion (TWI) =1?mm in =2 CL. BSPM STE was =2?mm in anterior, =1?mm in lateral, inferior, right ventricular or high right anterior and =0.5?mm in posterior territories. Significant LMS stenosis was =70%.

Results: Enrolled were 2810 patients (aged 60?±?12 years; 71% male). Of these, 116 (4.1%) had significant LMS stenosis with AMI occurring in 92 (79%). STEMI by Minnesota criteria occurred in 13 (11%) (sensitivity 12%, specificity 92%), STE in lead aVR in 23 (20%) (sensitivity 23%, specificity 92%), TWI in 38 (33%) (sensitivity 34%, specificity 71%) and STD in 51 (44%) (sensitivity 49%, specificity 75%). BSPM STE occurred in 85 (73%): sensitivity 88%, specificity 83%, positive predictive value 95% and negative predictive value 65%. Of those with AMI, 74% had STE in either the high right anterior or right ventricular territories not identified by the 12-lead ECG. C-Statistic for AMI diagnosis using BSPM STE was 0.800 (P?<?0.001).

Conclusion: In patients with significant LMS stenosis presenting with chest pain, BSPM STE has improved sensitivity (88%), with specificity 83%, over 12-lead ECG in the diagnosis of AMI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:
Erythropoietin (EPO) may be protective for early stage diabetic retinopathy, although there are concerns that it could exacerbate retinal angiogenesis and thrombosis. A peptide based on the EPO helix-B domain (helix B-surface peptide [pHBSP]) is nonerythrogenic but retains tissue-protective properties, and this study evaluates its therapeutic potential in diabetic retinopathy.
RESEARCH DESIGN AND METHODS:
After 6 months of streptozotocin-induced diabetes, rats (n = 12) and age-matched nondiabetic controls (n = 12) were evenly split into pHBSP and scrambled peptide groups and injected daily (10 µg/kg per day) for 1 month. The retina was investigated for glial dysfunction, microglial activation, and neuronal DNA damage. The vasculature was dual stained with isolectin and collagen IV. Retinal cytokine expression was quantified using real-time RT-PCR. In parallel, oxygen-induced retinopathy (OIR) was used to evaluate the effects of pHBSP on retinal ischemia and neovascularization (1-30 µg/kg pHBSP or control peptide).
RESULTS:
pHBSP or scrambled peptide treatment did not alter hematocrit. In the diabetic retina, Müller glial expression of glial fibrillary acidic protein was increased when compared with nondiabetic controls, but pHBSP significantly reduced this stress-related response (P < 0.001). CD11b+ microglia and proinflammatory cytokines were elevated in diabetic retina responses, and some of these responses were attenuated by pHBSP (P < 0.01-0.001). pHBSP significantly reduced diabetes-linked DNA damage as determined by 8-hydroxydeoxyguanosine and transferase-mediated dUTP nick-end labeling positivity and also prevented acellular capillary formation (P < 0.05). In OIR, pHBSP had no effect on preretinal neovascularization at any dose.
CONCLUSIONS:
Treatment with an EPO-derived peptide after diabetes is fully established can significantly protect against neuroglial and vascular degenerative pathology without altering hematocrit or exacerbating neovascularization. These findings have therapeutic implications for disorders such as diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.