161 resultados para DIABETIS MELLITUS TIPO2
Resumo:
Risk factors for the microvascular complications (nephropathy and retinopathy) of Type 1 and Type 2 diabetes mellitus and the associated accelerated atherosclerosis include: age, diabetes duration, genetic factors, hyperglycaemia, hypertension, smoking, inflammation, glycation and oxidative stress and dyslipoproteinaemia. Hypertriglyceridaemia, low HDL and small dense LDL are common features of Type 2 diabetes and Type 1 diabetes with poor glycaemic control or renal complications. With the expansion of knowledge and of clinical and research laboratory tools, a broader definition of 'lipid' abnormalities in diabetes is appropriate. Dyslipoproteinaemia encompasses alterations in lipid levels, lipoprotein subclass distribution, composition (including modifications such as non-enzymatic glycation and oxidative damage), lipoprotein-related enzymes, and receptor interactions and subsequent cell signaling. Alterations occur in all lipoprotein classes; chylomicrons, VLDL, LDL, HDL, and Lp(a). There is also emerging evidence implicating lipoprotein related genotypes in the development of diabetic nephropathy and retinopathy. Lipoprotein related mechanisms associated with damage to the cardiovascular system may also be relevant to damage to the renal and ocular microvasculature. Adverse tissue effects are mediated by both alterations in lipoprotein function and adverse cellular responses. Recognition and treatment of lipoprotein-related risk factors, supported by an increasing array of assays and therapeutic agents, may facilitate early recognition and treatment of high complication risk diabetic patients. Further clinical and basic research, including intervention trials, is warranted to guide clinical practice. Optimal lipoprotein management, as part of a multi-faceted approach to diabetes care, may reduce the excessive personal and economic burden of microvascular complications and the related accelerated atherosclerosis.
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
The chronic vascular complications of diabetes (nephropathy, retinopathy and accelerated atherosclerosis) are a major cause of morbidity and premature mortality. In spite of the more widespread availability of intensive diabetes management, approximately one in three people with diabetes develop aggressive complications and over 70% die of atherosclerosis-related diseases. Genetic and acquired factors are likely to be contributory. Potential mediators of vascular damage may include the interrelated processes of lipoprotein abnormalities, glycation, oxidation and endothelial dysfunction. Lipoprotein abnormalities encompass alterations in lipid concentrations, lipoprotein composition and subclass distribution and lipoprotein-related enzymes. Nonenzymatic glycation and oxidative damage to lipoproteins, other proteins and to vascular structures may also be deleterious. As atherosclerosis is a chronic condition commencing in youth, and because clinical events may be silent in diabetes, surrogate measures of vascular disease are important for early identification of diabetic patients with or at high risk of vascular damage, and for monitoring efficacy of interventions. The increasing array of biochemical assays for markers and mediators of vascular damage, noninvasive measures of vascular health, and therapeutic options should enable a reduction in the excessive personal and economic burden of vascular disease in type 1 and type 2 diabetes.
Resumo:
It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.
Resumo:
To determine associations between retinopathy status and detailed serum lipoprotein subclass profiles in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) cohort.
Resumo:
The contribution of preexisting hypercholesterolemia to diabetic nephropathy remains unclear. We assessed the impact of hypercholesterolemia on diabetic nephropathy using a double knockout (DKO) mouse, null for the low-density lipoprotein receptor (LDLRNDASH;/NDASH;) and the apoB mRNA editing catalytic polypeptide 1 (APOBEC1NDASH;/NDASH;).
Resumo:
Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.
Resumo:
To relate the nuclear magnetic resonance (NMR)-determined lipoprotein profile, conventional lipid and apolipoprotein measures, and in vitro oxidizibility of LDL with gender and glycemia in type 1 diabetes.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.
Resumo:
3-Deoxyglucosone (3-DG) is a reactive dicarbonyl sugar thought to be a key intermediate in the nonenzymatic polymerization and browning of proteins by glucose. 3-DG may be formed in vivo from fructose, fructose 3-phosphate, or Amadori adducts to protein, such as N epsilon-fructoselysine (FL), all of which are known to be elevated in body fluids or tissues in diabetes. Modification of proteins by 3-DG formed in vivo is thought to be limited by enzymatic reduction of 3-DG to less reactive species, such as 3-deoxyfructose (3-DF). In this study, we have measured 3-DF, as a metabolic fingerprint of 3-DG, in plasma and urine from a group of diabetic patients and control subjects. Plasma and urinary 3-DF concentrations were significantly increased in the diabetic compared with the control population (0.853 +/- 0.189 vs. 0.494 +/- 0.072 microM, P <0.001, and 69.9 +/- 44.2 vs. 38.7 +/- 16.1 nmol/mg creatinine, P <0.001, respectively). Plasma and urinary 3-DF concentrations correlated strongly with one another, with HbA1c (P <0.005 in all cases), and with urinary FL (P <0.02 and P = 0.005, respectively). The overall increase in 3-DF concentrations in plasma and urine in diabetes and their correlation with other indexes of glycemic control suggest that increased amounts of 3-DG are formed in the body during hyperglycemia in diabetes and then metabolized to 3-DF. These observations are consistent with a role for increased formation of the dicarbonyl sugar 3-DG in the accelerated browning of tissue proteins in diabetes.
Resumo:
To compare platelet plasminogen activator inhibitor 1 (PAI-1) concentration in type II diabetic patients and healthy control subjects.