466 resultados para D. N. P. S. F.-Correspondencia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The susceptibility of Staphylococcus aureus [meticillin-resistant (MRSA) and meticillin-sensitive (MSSA)] and coagulase-negative staphylococci (CoNS), which respectively form part of the transient and commensal skin flora, to tea-tree oil (TTO) was compared using broth microdilution and quantitative in vitro time-kill test methods. MRSA and MSSA isolates were significantly less susceptible than CoNS isolates, as measured by both MIC and minimum bactericidal concentration. A significant decrease in the mean viable count of all isolates in comparison with the control was seen at each time interval in time-kill assays. However, the only significant difference in the overall mean log(10) reduction in viable count between the groups of isolates was between CoNS and MSSA at 3 h, with CoNS isolates demonstrating a significantly lower mean reduction. To provide a better simulation of in vivo conditions on the skin, where bacteria are reported to grow as microcolonies encased in glycocalyx, the bactericidal activity of TTO against isolates grown as biofilms was also compared. Biofilms formed by MSSA and MRSA isolates were completely eradicated following exposure to 5 % TTO for 1 h. In contrast, of the biofilms formed by the nine CoNS isolates tested, only five were completely killed, although a reduction in viable count was apparent for the other four isolates. These results suggest that TTO exerts a greater bactericidal activity against biofilm-grown MRSA and MSSA isolates than against some biofilm-grown CoNS isolates.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Editorial for 17th AICS Conference

Relevância:

80.00% 80.00%

Publicador:

Resumo:

<p>Fragmentation of metastable SF6-* ions formed in low energy electron attachment to SF<sub class="emphinferior" style="font-size: 10px; line-height: 10px;">6sub>has been investigated. The dissociation reactio SF6-*?SF5-+F has been observe ~ 1.5–3.4 µs</em> and ~ 17–32 µs</em> after electron attachment in a time-of-flight and a double focusing two sector field mass spectrometer, respectively. Metastable dissociation is observed with maximum intensity at ~ 0.3 eV between the SF6-* peak at zero and theSF5- peak at ~ 0.4 eV. The kinetic energy released in dissociation is low, with a most probable value of 18 meV. The lifetime of SF6-* decreases as the electron energy increases, but it is not possible to fit this decrease with statistical Rice–Ramsperger–Kassel/quasiequilibrium theory. Metastable dissociation of SF6-* appears to compete with autodetachment of the electron at all electron energies.p>

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive analysis of metastable dissociation of 2, 4-dinitrotoluene (DNT) parent anions formed by attachment of electrons of controlled energy is presented. We characterize the energy dependence and kinetic energy release of the reaction which competes with autodetachment. A surprising finding is a highly exothermic metastable reaction triggered by the attachment of thermal electrons which we relate to the well-known electrostatic ignition hazards of DNT and other explosives. Quantum chemical calculations are performed for dinitrobenzene in order to elucidate the process of NO abstraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppi€™s domains are involved in the protei€™s antibacterial activity, only the Kunitz domain is required for selective protease inhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.