167 resultados para Circulating microrna
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.
Resumo:
Cardiovascular disease (CVD) is a major cause of death in smokers, particularly in those with chronic obstructive pulmonary disease (COPD). Circulating endothelial progenitor cells (EPC) are required for endothelial homeostasis, and their dysfunction contributes to CVD. To investigate EPC dysfunction in smokers, we isolated and expanded blood outgrowth endothelial cells (BOEC) from peripheral blood samples from healthy nonsmokers, healthy smokers, and COPD patients. BOEC from smokers and COPD patients showed increased DNA double-strand breaks and senescence compared to nonsmokers. Senescence negatively correlated with the expression and activity of sirtuin-1 (SIRT1), a protein deacetylase that protects against DNA damage and cellular senescence. Inhibition of DNA damage response by silencing of ataxia telangiectasia mutated (ATM) kinase resulted in upregulation of SIRT1 expression and decreased senescence. Treatment of BOEC from COPD patients with the SIRT1 activator resveratrol or an ATM inhibitor (KU-55933) also rescued the senescent phenotype. Using an in vivo mouse model of angiogenesis, we demonstrated that senescent BOEC from COPD patients are dysfunctional, displaying impaired angiogenic ability and increased apoptosis compared to cells from healthy nonsmokers. Therefore, this study identifies epigenetic regulation of DNA damage and senescence as pathogenetic mechanisms linked to endothelial progenitors' dysfunction in smokers and COPD patients. These defects may contribute to vascular disease and cardiovascular events in smokers and could therefore constitute therapeutic targets for intervention.
Resumo:
Malignant pleural mesothelioma (MPM) is a highly pro-inflammatory malignancy that is rapidly fatal and increasing in incidence. Cytokine signaling within the pro-inflammatory tumor microenvironment makes a critical contribution to the development of MPM and its resistance to conventional chemotherapy approaches. SMAC mimetic compounds (SMCs) are a promising class of anticancer drug that are dependent on tumor necrosis factor alpha (TNFa) signaling for their activity. As circulating TNFa expression is significantly elevated in MPM patients, we examined the sensitivity of MPM cell line models to SMCs. Surprisingly, all MPM cell lines assessed were highly resistant to SMCs either alone or when incubated in the presence of clinically relevant levels of TNFa. Further analyses revealed that MPM cells were sensitized to SMC-induced apoptosis by siRNA-mediated downregulation of the caspase 8 inhibitor FLIP, an antiapoptotic protein overexpressed in several cancer types including MPM. We have previously reported that FLIP expression is potently downregulated in MPM cells in response to the histone deacetylase inhibitor (HDACi) Vorinostat (SAHA). In this study, we demonstrate that SAHA sensitizes MPM cells to SMCs in a manner dependent on its ability to downregulate FLIP. Although treatment with SMC in the presence of TNFa promoted interaction between caspase 8 and the necrosis-promoting RIPK1, the cell death induced by combined treatment with SAHA and SMC was apoptotic and mediated by caspase 8. These results indicate that FLIP is a major inhibitor of SMC-mediated apoptosis in MPM, but that this inhibition can be overcome by the HDACi SAHA. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
Suitable ester prodrugs of 17b-estradiol are identified, thus permitting effective sustained and controlled estrogen replacement therapy (ERT) from an elastomeric, silicone intravaginal ring (IVR). IVR devices of reservoir design were prepared by blending silicone elastomer base with n-propylorthosilicate (cross-linker) and 10% w/w of 17b-estradiol or an ester prodrug, the mix being activated with 0.5% w/w stannous octoate and cured at 808C for 2 min. A rate-controlling membrane was similarly prepared, without the active agent. IVR devices were of cross-sectional diameter 9 mm, outer diameter 54 mm, with core cross-sectional diameter of 2 mm and core length varied as required. Sink conditions were evident for the 17b-estradiol esters in 1.0% aqueous benzalkonium chloride solution. The low release rates into 0.9% w/v saline of the lipophilic valerate and benzoate esters were due to their intrinsically low aqueous solubilities. In vivo, these esters failed to raise plasma estradiol above baseline levels in postmenopausal human volunteers, despite good in vitro release characteristics under sink conditions. The best release rates under sink conditions, in combination with substantial aqueous solubilities as indicated by the release rates into saline, were observed for the acetate and propionate esters. A
combination of drug release characteristics, short plasma half-life and a toxicologically acceptable hydrolysis product indicated that 17b-estradiol-3-acetate was the prodrug of choice for IVR delivery of ERT. In vivo, an IVR device releasing
100 mg/day of estradiol as its 3-acetate ester maintained over 84 days a circulating plasma concentration in the region of 300 pmol l , within the clinically desirable range for ERT.
Resumo:
Purpose: MicroRNAs (miRNAs) are small non-coding RNAs of ~18-22 nucleotides in length that regulate gene expression. They are widely expressed in the retina, being both required for its normal development and perturbed in disease. The aim of this study was to apply new high-throughput sequencing techniques to more fully characterise the microRNAs and other small RNAs expressed in the retina and retinal pigment epithelium (RPE)/choroid of the mouse.
Methods: Retina and RPE/choroid were dissected from eyes of 3 month-old C57BL/6J mice. Small RNA libraries were prepared and deep sequencing performed on a Genome Analyzer (Illumina). Reads were annotated by alignment to miRBase, other non-coding RNA databases and the mouse genome.
Results: Annotation of 9 million reads to 320 microRNAs in retina and 340 in RPE/choroid provides the most comprehensive profiling of microRNAs to date. Two novel microRNAs were identified in retina. Members of the sensory organ specific miR-183,-182,-96 cluster were amongst the most highly expressed, retina-enriched microRNAs. Remarkably, microRNA 'isomiRs', which vary slightly in length and are differentially detected by Taqman RT-PCR assays, existed for all the microRNAs identified in both tissues. More variation occurred at the 3' ends, including non-templated additions of T and A. Drosha-independent mirtron microRNAs and other small RNAs derived from snoRNAs were also detected.
Conclusions: Deep sequencing has revealed the complexity of small RNA expression in the mouse retina and RPE/choroid. This knowledge will improve the design and interpretation of future functional studies of the role of microRNAs and other small RNAs in retinal disease.
Resumo:
Serum erythropoietic activity and reticulocyte response to anemia were investigated using a rabbit model. In hemolytic anemia, induced by injections of phenylhydrazine on Day 0 the hemoglobin reached a nadir (mean, 6.23 g/dl) on Day 4 when SEA was maximal (mean, 765 mU/ml). In animals venesected on Day 0 and Day 1 to produce anemia of equal severity, the SEA was maximal (mean 235 mU/ml) on Day 2. In both groups the reticulocyte response peaked on Day 7--at 34% for the hemolytic group and 21% for the venesected group. The 2,3-diphosphoglycerate, measured on Day 4, was significantly reduced in the PHZ-treated group. In the venesected group the 2,3-DPG increased between Day 0 and Day 4. There were no concurrent changes in acid-base balance. These results imply that the degree of anemia is only one of the factors which influence the level of circulating SEA.
Resumo:
Animals subjected to hypoxia become hypocapnic and after some hours show an increase in circulating erythropoietin. The steps involved in the increased production of erythropoietin in response to hypoxia are not fully understood, although it has been postulated that changes in coincident variables such as acid-base balance may contribute to the mechanism of increased erythropoietin production. A rabbit model has been used to determine the physiological changes which occur in short-term hypobaric hypoxia. After 1 h, no changes were found in pCO2, pH, P50, base excess, standard bicarbonate or serum erythropoietic activity (SEA). After 3 h the pCO2, pH, base excess and standard bicarbonate had decreased while the P50 and SEA had increased. After 6 h, although the pCO2 was still significantly reduced, the pH, base excess and standard bicarbonate had returned to the initial levels and maximal SEA values. 20-fold greater than the pre-hypoxia values were found. Overall the data are consistent with the view that the magnitude of the erythropoietic response to hypoxia is modified by changes in acid-base balance.
Resumo:
Background: This study investigates the coverage of adherence to medicine by the UK and US newsprint media. Adherence to medicine is recognised as an important issue facing healthcare professionals and the newsprint media is a key source of health information, however, little is known about newspaper coverage of medication adherence.
Methods. A search of the newspaper database Nexis®UK from 2004-2011 was performed. Content analysis of newspaper articles which referenced medication adherence from the twelve highest circulating UK and US daily newspapers and their Sunday equivalents was carried out. A second researcher coded a 15% sample of newspaper articles to establish the inter-rater reliability of coding.
Results: Searches of newspaper coverage of medication adherence in the UK and US yielded 181 relevant articles for each country. There was a large increase in the number of scientific articles on medication adherence in PubMed® over the study period, however, this was not reflected in the frequency of newspaper articles published on medication adherence. UK newspaper articles were significantly more likely to report the benefits of adherence (p = 0.005), whereas US newspaper articles were significantly more likely to report adherence issues in the elderly population (p = 0.004) and adherence associated with diseases of the central nervous system (p = 0.046). The most commonly reported barriers to adherence were patient factors e.g. poor memory, beliefs and age, whereas, the most commonly reported facilitators to adherence were medication factors including simplified regimens, shorter treatment duration and combination tablets. HIV/AIDS was the single most frequently cited disease (reported in 20% of newspaper articles). Poor quality reporting of medication adherence was identified in 62% of newspaper articles.
Conclusion: Adherence is not well covered in the newspaper media despite a significant presence in the medical literature. The mass media have the potential to help educate and shape the public's knowledge regarding the importance of medication adherence; this potential is not being realised at present. © 2013 Goodfellow et al.; licensee BioMed Central Ltd.
Resumo:
Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.Journal of Investigative Dermatology accepted article preview online, 24 January 2014. doi:10.1038/jid.2014.40.
Resumo:
Recently it has been shown that levels of circulating oxidized LDL immune complexes (ox-LDL-IC) predict the development of diabetic retinopathy (DR). This study aimed to investigate whether ox-LDL-IC are actually present in the diabetic retina, and to define their effects on human retinal pericytes vs. ox-LDL. In retinal sections from people with type 2 diabetes, co-staining for ox-LDL and IgG was present, proportionate to DR severity, and detectable even in the absence of clinical DR. In contrast, no such staining was observed in retinas from non-diabetic subjects. In vitro, human retinal pericytes were treated with native (N-) LDL, ox-LDL, and ox-LDL-IC (0-200 mg protein/l), and measures of viability, receptor expression, apoptosis, ER and oxidative stresses, and cytokine secretion were evaluated. Ox-LDL-IC exhibited greater cytotoxicity than ox-LDL towards retinal pericytes. Acting through the scavenger (CD36) and IgG (CD64) receptors, low concentrations of ox-LDL-IC triggered apoptosis mediated by oxidative and ER stresses, and enhanced inflammatory cytokine secretion. The data suggest that IC formation in the diabetic retina enhances the injurious effects of ox-LDL. These findings offer new insights into pathogenic mechanisms of DR, and may lead to new preventive measures and treatments.
Resumo:
A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes.
Resumo:
Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40-50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication.