151 resultados para Chaná


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A role for the minichromosome maintenance (MCM) proteins in cancer initiation and progression is slowly emerging. Functioning as a complex to ensure a single chromosomal replication per cell cycle, the six family members have been implicated in several neoplastic disease states, including breast cancer. Our study aim to investigate the prognostic significance of these proteins in breast cancer. We studied the expression of MCMs in various datasets and the associations of the expression with clinicopathological parameters. When considered alone, high level MCM4 overexpression was only weakly associated with shorter survival in the combined breast cancer patient cohort (n = 1441, Hazard Ratio = 1.31; 95% Confidence Interval = 1.11-1.55; p = 0.001). On the other hand, when we studied all six components of the MCM complex, we found that overexpression of all MCMs was strongly associated with shorter survival in the same cohort (n = 1441, Hazard Ratio = 1.75; 95% Confidence Interval = 1.31-2.34; p <0.001), suggesting these MCM proteins may cooperate to promote breast cancer progression. Indeed, their expressions were significantly correlated with each other in these cohorts. In addition, we found that increasing number of overexpressed MCMs was associated with negative ER status as well as treatment response. Together, our findings are reproducible in seven independent breast cancer cohorts, with 1441 patients, and suggest that MCM profiling could potentially be used to predict response to treatment and prognosis in breast cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent therapeutic improvements, the clinical course of diffuse large B-cell lymphoma (DLBCL) still differs considerably among patients. We conducted this retrospective multi-centre study to evaluate the impact of genomic aberrations detected using a high-density genome wide-single nucleotide polymorphism-based array on clinical outcome in a population of DLBCL patients treated with R-CHOP-21 (rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone repeated every 21_d). 166 DNA samples were analysed using the GeneChip Human Mapping 250K NspI. Genomic anomalies were analysed regarding their impact on the clinical course of 124 patients treated with R-CHOP-21. Unsupervised clustering was performed to identify genetically related subgroups of patients with different clinical outcomes. Twenty recurrent genetic lesions showed an impact on the clinical course. Loss of genomic material at 8p23.1 showed the strongest statistical significance and was associated with additional aberrations, such as 17p- and 15q-. Unsupervised clustering identified five DLBCL clusters with distinct genetic profiles, clinical characteristics and outcomes. Genetic features and clusters, associated with a different outcome in patients treated with R-CHOP, have been identified by arrayCGH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is a major cause of visual impairment worldwide. The precise pathogenesis of this diabetic complication remains ill-defined and this is reflected in the limited options for preventing development and progression of this disease. The value of animal models to understand and treat human disease is well recognised and this chapter focuses on the range of in vivo model systems that are available for studying DR. These models have been developed over many decades and utilised to aid our understanding of what causes DR, about how microvascular and neural lesions develop and to provide evidence for key cellular and molecular mechanisms that drive this pathology. A wide range of animal models of DR are currently available, each with advantages and disadvantages that need to be understood and evaluated for their scientific and clinical value. As transgenic and imaging technology improves, more models will be developed and they will continue to play a critical role in the development of new therapeutic approaches to DR by providing robust, preclinical evidence prior to clinical trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction
Despite excellent first year outcomes in kidney transplantation, there remain significant long-term complications related to new-onset diabetes after transplantation (NODAT). The purpose of this study was to validate the findings of previous investigations of candidate gene variants in patients undergoing a protocolised, contemporary immunosuppression regimen, using detailed serial biochemical testing to identify NODAT development.

Methods
One hundred twelve live and deceased donor renal transplant recipients were prospectively followed-up for NODAT onset, biochemical testing at days 7, 90, and 365 after transplantation. Sixty-eight patients were included after exclusion for non-white ethnicity and pre-transplant diabetes. Literature review to identify candidate gene variants was undertaken as described previously.

Results
Over 25% of patients developed NODAT. In an adjusted model for age, sex, BMI, and BMI change over 12 months, five out of the studied 37 single nucleotide polymorphisms (SNPs) were significantly associated with NODAT: rs16936667:PRDM14 OR 10.57;95% CI 1.8–63.0;p = 0.01, rs1801282:PPARG OR 8.5; 95% CI 1.4–52.7; p = 0.02, rs8192678:PPARGC1A OR 0.26; 95% CI 0.08–0.91; p = 0.03, rs2144908:HNF4A OR 7.0; 95% CI 1.1–45.0;p = 0.04 and rs2340721:ATF6 OR 0.21; 95%CI 0.04–1.0; p = 0.05.

Conclusion
This study represents a replication study of candidate SNPs associated with developing NODAT and implicates mTOR as the central regulator via altered insulin sensitivity, pancreatic β cell, and mitochondrial survival and dysfunction as evidenced by the five SNPs.

General significance
1) Highlights the importance of careful biochemical phenotyping with oral glucose tolerance tests to diagnose NODAT in reducing time to diagnosis and missed cases.
2)This alters potential genotype:phenotype association.
3)The replication study generates the hypothesis that mTOR signalling pathway may be involved in NODAT development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunotherapy is a promising strategy for the treatment of various types of cancer. An antibody that targets programmed death ligand-1 (PD-L1) pathway has been shown to be active towards various types of cancer, including melanoma and lung cancer. MPDL3280A, an anti‑PD-L1 antibody, has shown clear clinical activity in PD-L1-overexpressing bladder cancer with an objective response rate of 40-50%, resulting in a breakthrough therapy designation granted by FDA. These events pronounce the importance of targeting the PD-L1 pathway in the treatment of bladder cancer. In the present study, we investigated the prognostic significance of the expression of three genes in the PD-L1 pathway, including PD-L1, B7.1 and PD-1, in three independent bladder cancer datasets in the Gene Expression Omnibus database. PD-L1, B7.1 and PD-1 were significantly associated with clinicopathological parameters indicative of a more aggressive phenotype of bladder cancer, such as a more advanced stage and a higher tumor grade. In addition, a high level expression of PD-L1 was associated with reduced patient survival. Of note, the combination of PD-L1 and B7.1 expression, but not other combinations of the three genes, were also able to predict patient survival. Our findings support the development of anti-PD-L1, which blocks PD-L1-PD-1 and B7.1-PD-L1 interactions, in treatment of bladder cancer. The observations were consistent in the three independent bladder cancer datasets consisting of a total of 695 human bladder specimens. The datasets were then assessed and it was found that the expression levels of the chemokine CC-motif ligand (CCL), CCL3, CCL8 and CCL18, were correlated with the PD-L1 expression level, while ADAMTS13 was differentially expressed in patients with a different survival status (alive or deceased). Additional investigations are required to elucidate the role of these genes in the PD-L1-mediated immune system suppression and bladder cancer progression. In conclusion, findings of this study suggested that PD-L1 is an important prognostic marker and a therapeutic target for bladder cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the Western world. It is becoming increasingly clear that CRC is a diverse disease, as exemplified by the identification of subgroups of CRC tumours that are driven by distinct biology. Recently, a number of studies have begun to define panels of diagnostically relevant markers to align patients into individual subgroups in an attempt to give information on prognosis and treatment response. We examined the immunohistochemical expression profile of 18 markers, each representing a putative role in cancer development, in 493 primary colorectal carcinomas using tissue microarrays. Through unsupervised clustering in stage II cancers, we identified two cluster groups that are broadly defined by inflammatory or immune-related factors (CD3, CD8, COX-2 and FOXP3) and stem-like factors (CD44, LGR5, SOX2, OCT4). The expression of the stem-like group markers was associated with a significantly worse prognosis compared to cases with lower expression. In addition, patients classified in the stem-like subgroup displayed a trend towards a benefit from adjuvant treatment. The biologically relevant and poor prognostic stem-like group could also be identified in early stage I cancers, suggesting a potential opportunity for the identification of aggressive tumors at a very early stage of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The canonical Wnt signaling is activated by retinal injury. Under disease conditions, the Wnt mediates inflammatory responses. Inflammation has been detected in age-related macular degeneration (AMD) retinas and Ccl2-/-/Cx3cr1-/- (DKO) mice with or without rd8 background, a model with progressive AMD-like lesions including focal photoreceptor/RPE degeneration and A2E accumulation. We evaluated the effects of Wnt-β-catenin activation and an antibody against LRP6, the co-receptor of Wnt on these two models.

Methods: anti-LRP6 antibody (2F1, 1 μl of 5 μg/μL) was intravitreally injected into the right eyes in 3 separate experiments (DKOrd8, N=35; DKO, N=10). The left eyes were injected with mouse IgG as controls. Fundoscopy was taken before injection and sequentially monthly after injection. Two months after injection, light-adapted ERG responses were recorded; then the eyes were harvested for histopathology, the determination of retinal A2E, and molecular analysis. The microarray of ocular mRNA of 92 Wnt genes was compared between the treated and the control eyes. The phosphorylated types of LRP6 and β-catenin and endogenous forms of the proteins were assayed by Western blotting.

Results: For DKOrd8 mice, the fundus showed a slower progression or alleviation of retinal lesions in the right eyes as compared to the left eyes. Among 35 pairs of eyes, 26 (74.3%) were improved, 7 (20%) stayed the same and 2 (5.7%) remained progressing. Histology confirmed the clinical observation. Light-adapted ERG of the treated eyes exhibited larger amplitudes compared to control eyes (n=6), with greater improvements under UV light stimulus. There was a significantly lower A2E in the treated eyes compared to controls. Microarray of 92 Wnt genes expression pattern was similar in both eyes. Western blotting indicated local administration of 2F1 antibody to suppress the activation of Wnt pathway in the retina. For DKO mice, the treatment improved ERG but less effect on RPE degeneration.

Conclusions: The canonical Wnt signaling plays a role in the focal retina lesion of both DKOrd8 and DKO mice; and intravitreal anti-LRP6 antibody might be neuroprotective via deactivation of canonical Wnt pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly.

METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD.

RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas.

CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.