242 resultados para Carbamyl Phosphate Synthase Deficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alpha-1 antitrypsin deficiency (AATD) results from mutations in the SERPINA1 gene and classically presents with early-onset emphysema and liver disease. The most common mutation presenting with clinical evidence is the Z mutation, while the S mutation is associated with a milder plasma deficiency. AATD is an under-diagnosed condition and the World Health Organisation recommends targeted detection programmes for AATD in patients with chronic obstructive pulmonary disease (COPD), non-responsive asthma, cryptogenic liver disease and first degree relatives of known AATD patients.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S- phosphorothioamidite (7) by activation with 5-(p- nitrophenyl)tetrazole in the presence of 3'-O- acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) perlodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T] was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphoro thiolte. Absolute stereochemistry has been assigned to the diastereoisomers of d by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient chemical synthesis of 5a-carba-alpha-D-mannose and its enzymatic elaboration to 5a-carba-alpha-D-mannose-6-phosphate, using yeast hexokinase, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.