140 resultados para C1 inhibitor
Resumo:
Background: The incidence of delirium in ventilated patients is estimated at up to 82%, and it is associated with longer intensive care and hospital stays, and long-term cognitive impairment and mortality. The pathophysiology of delirium has been linked with inflammation and neuronal apoptosis. Simvastatin has pleiotropic properties; it penetrates the brain and, as well as reducing cholesterol, reduces inflammation when used at clinically relevant doses over the short term. This is a single centre randomised, controlled trial which aims to test the hypothesis that treatment with simvastatin will modify delirium incidence and outcomes.
Methods/Design: The ongoing study will include 142 adults admitted to the Watford General Hospital Intensive Care Unit who require mechanical ventilation in the first 72 hours of admission. The primary outcome is the number of delirium- and coma-free days in the first 14 days. Secondary outcomes include incidence of delirium, delirium- and coma-free days in the first 28 days, days in delirium and in coma at 14 and 28 days, number of ventilator-free days at 28 days, length of critical care and hospital stay, mortality, cognitive decline and healthcare resource use. Informed consent will be taken from patient's consultee before randomisation to receive either simvastatin (80 mg) or placebo once daily. Daily data will be recorded until day 28 after randomisation or until discharge from the ICU if sooner. Surviving patients will be followed up on at six months from discharge. Plasma and urine samples will be taken to investigate the biological effect of simvastatin on systemic markers of inflammation, as related to the number of delirium- and coma-free days, and the potential of cholinesterase activity and beta-amyloid as predictors of the risk of delirium and long-term cognitive impairment.
Discussion: This trial will test the efficacy of simvastatin on reducing delirium in the critically ill. If patients receiving the statin show a reduced number of days in delirium compared with the placebo group, the inflammatory theory implicated in the pathogenesis of delirium will be strengthened.
Resumo:
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and codownregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Resumo:
The effect of the microfilament inhibitor cytochalasin B (10 and 100 micrograms/ml) on the ultrastructure of adult Fasciola hepatica was determined in vitro by scanning and transmission electron microscopy (SEM, TEM) using both intact flukes and tissue-slice material. SEM revealed that initial swelling of the tegument led to surface blebbing and limited areas of sloughing after 24 h treatment at 100 micrograms/ml. In the tegumental syncytium, basal accumulations of secretory bodies (especially T2s) were evident in the earlier time periods but declined with longer incubations, until few secretory bodies remained in the syncytium overall. Blebbing of the apical plasma membrane and occasional areas of breakdown and sloughing of the tegument were observed over longer periods of treatment at 100 micrograms/ml. In the tegumental cell bodies, the Golgi complexes gradually decreased in size and activity, and few secretory bodies were produced. In the later time periods, the cells assumed abnormal shapes, the cytoplasm shrinking in towards the nucleus. In the vitelline follicles, a random dispersion of shell protein globules was evident within the intermediate-type cells, rather than their being organized into distinct shell globule clusters. Disruption of this process was more severe at the higher concentration of 100 micrograms/ml and again was more evident in tissue-slice material. In the latter, after prolonged (12 h) exposure to cytochalasin B, the intermediate and mature vitelline cells were filled with loosely packed and expanded shell globule clusters, containing few shell protein globules. The mature vitelline cells continued to lay down "yolk" globules and glycogen deposits. Disruption of the network of processes from the nurse cells was evident at the higher concentration of cytochalasin. Spaces began to appear between the vitelline cells and grew larger with progressively longer incubation periods, and the cells themselves assumed abnormal shapes. A number of binucleate stem cells were observed in tissue-slice material at the longest incubation period (12 h).
Resumo:
The distribution of actin filaments in the spermatogenic cells of Fasciola hepatica was determined using a fluorescent derivative of phalloidin. Actin was localised primarily in the region of separation of a secondary spermatogonium from a primary spermatogonium, in the inner faces at the centre of four-cell clusters of tertiary spermatogonia and in the cytophore region of spermatocyte and spermatid rosettes. The effect of the microfilament inhibitor cytochalasin B (100 micrograms/ml) on the ultrastructure of the spermatogenic cells was determined in vitro by transmission electron microscopy using tissue-slice material. Cytochalasin B treatment led to the formation of bi- and multinucleate cells, whose frequency increased with progressively longer incubation periods. Few typical rosettes of spermatocyte and spermatid cells were evident from 6 h onwards, being replaced by syncytial masses of cells. Spermatozoon formation became abnormal in the longer treatment periods, the spermatozoa containing variable numbers of axonemes and an altered distribution of cortical microtubules. Multiple axonemes were observed in the cytoplasm of spermatid cells. The results are discussed in relation to the established role of actin in the cytokinesis phase of cell division and to the effects of cytochalasin B on other tissues and organ systems within the fluke.
Resumo:
Secretory Leukocyte Protease Inhibitor (SLPI) is a serine protease inhibitor produced by epithelial and myeloid cells with anti-inflammatory properties. Research has shown that SLPI exerts its anti-inflammatory activity by directly binding to NF-κB DNA binding sites and, in so doing, prevents binding and subsequent transcription of proinflammatory gene expression. In the current study, we demonstrate that SLPI can inhibit TNF-α-induced apoptosis in U937 cells and peripheral blood monocytes. Specifically, SLPI inhibits TNF-α-induced caspase-3 activation and DNA degradation associated with apoptosis. We go on to show that this ability of SLPI to inhibit apoptosis is not dependent on its antiprotease activity as antiprotease deficient variants of SLPI can also inhibit TNF-α-induced apoptosis. This reduction in monocyte apoptosis may preserve monocyte function during inflammation resolution and promote infection clearance at mucosal sites.
Resumo:
Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI’s proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.
Resumo:
In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.
Resumo:
The histamine H4 receptor regulates the inflammatory response. However, it is not known whether this receptor has a functional role in human neutrophils. We found that fMLP (1 μM), but not histamine (0.1-1 μM), induced Mac-1-dependent adhesion, polarization, and degranulation (release of lactoferrin). A pretreatment of neutrophils with histamine (0.001-1 μM) or JNJ 28610244 (0.1-10 μM), a specific H4 receptor agonist, led to inhibition of degranulation. Total inhibition of degranulation was obtained with 0.1 μM histamine and 10 μM JNJ 28610244. Furthermore, such inhibition by histamine of degranulation was reversed by JNJ 7777120 and JNJ 28307474, two selective H4 receptor antagonists. However, neither histamine nor the H4 receptor agonist JNJ 28610244 prevented fMLP-induced, Mac-1-dependent adhesion, indicating that the H4 receptor may block signals emanating from Mac-1-controlling degranulation. Likewise, engagement of the H4 receptor by the selective agonist JNJ 28610244 blocked Mac-1-dependent activation of p38 MAPK, the kinase that controls neutrophil degranulation. We also show expression of the H4 receptor at the mRNA level in ultrapure human neutrophils and myeloid leukemia PLB-985 cells. We concluded that engagement of this receptor by selective H4 receptor agonists may represent a good, therapeutic approach to accelerate resolution of inflammation.
Resumo:
As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.
Resumo:
Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER-2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN-38, the active metabolite of irinotecan (CPT-11), in colon and gastric cancer cell lines. Concentration-dependent antiproliferative effects of both lapatinib and SN-38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08-11.7 muM; SN-38 range 3.6-256 nM). Lapatinib potently inhibited the growth of a HER-2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER-2 expression. The combination of lapatinib and SN-38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN-38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN-38 when compared to SN-38 treatment alone. Finally, the combination of lapatinib and CPT-11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT-11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas.