211 resultados para Binding precedents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IQGAP [IQ-motif-containing GAP (GTPase-activating protein)] family members are eukaryotic proteins that act at the interface between cellular signalling and the cytoskeleton. As such they collect numerous inputs from a variety of signalling pathways. A key binding partner is the calcium-sensing protein CaM (calmodulin). This protein binds mainly through a series of IQ-motifs which are located towards the middle of the primary sequence of the IQGAPs. In some IQGAPs, these motifs also provide binding sites for CaM-like proteins such as myosin essential light chain and S100B. Using synthetic peptides and native gel electrophoresis, the binding properties of the IQ-motifs from human IQGAP2 and IQGAP3 have been mapped. The second and third IQ-motifs in IQGAP2 and all four of the IQ-motifs of IQGAP3 interacted with CaM in the presence of calcium ions. However, there were differences in the type of interaction: while some IQ-motifs were able to form complexes with CaM which were stable under the conditions of the experiment, others formed more transient interactions. The first IQ-motifs from IQGAP2 and IQGAP3 formed transient interactions with CaM in the absence of calcium and the first motif from IQGAP3 formed a transient interaction with the myosin essential light chain MIc1sa. None of these IQ-motifs interacted with S100B. Molecular modelling suggested that all of the IQ-motifs, except the first one from IQGAP2 formed alpha-helices in solution. These results extend our knowledge of the selectivity of IQ-motifs for CaM and related proteins.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using GO-G, confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser(15) (p53(Ser15)), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologicafly distinct subpool of p53(Ser15) is ATM dependent and resistant to 26S-proteasomal degradation. p53(Ser15) colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear micro-beam irradiation studies confirm p53 S,,15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser(15) or Ser(18) phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21(WAF) decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis. (Cancer Res 2005; 65(23): 10810-21).