232 resultados para Atomic beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak et al., Phys. Plasmas 12, 057305 (2005)], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.