151 resultados para Asymptotic throughout capacity
Resumo:
Background
Providing palliative care in long-term care (LTC) homes is an area of growing importance. As a result, attention is being given to exploring effective palliative care learning strategies for personal support workers (PSWs) who provide the most hands-on care to LTC residents.
AimThe purpose of this intervention was to explore hospice visits as an experiential learning strategy to increase the capacity of PSWs in palliative care, specifically related to their new learning, and how they anticipated this experience changed their practices in LTC.
DesignThis study utilised a qualitative descriptive design.
MethodsEleven PSWs from four Ontario LTC homes were sent to their local hospice to shadow staff for one to two days. After the visit, PSWs completed a questionnaire with open-ended questions based on critical reflection. Data were analysed using thematic content analysis.
ResultsPSWs commented on the extent of resident-focused care at the hospice and how palliative care interventions were tailored to meet the needs of residents. PSWs were surprised with the lack of routine at the hospice but felt that hospice staff prioritised their time effectively in order to meet family and client care needs. Some PSWs were pleased to see how well integrated the PSW role is on the community hospice team without any hierarchical relationships. Finally, PSWs felt that other LTC staff would benefit from palliative care education and becoming more comfortable with talking about death and dying with other staff, residents and family members.
ConclusionThis study highlighted the benefits of PSWs attending a hospice as an experiential learning strategy. Future work is needed to evaluate this strategy using more rigorous designs as a way to build capacity within PSWs to provide optimal palliative care for LTC residents and their family members.
Implications for practicePSWs need to be recognised as important members within the interdisciplinary team. PSWs who shadow staff at hospices view this experience as a positive strategy to meet their learning needs related to palliative care.
Resumo:
A novel method for the detection of linear decalibration of sensors is proposed. The presence of a fault is indicated as a change in the mean of a white noise sequence. A simulation example is described which shows the success of the technique.
Resumo:
Cognitive radio has emerged as an essential recipe for future high-capacity high-coverage multi-tier hierarchical networks. Securing data transmission in these networks is of utmost importance. In this paper, we consider the cognitive wiretap channel and propose multiple antennas to secure the transmission at the physical layer, where the eavesdropper overhears the transmission from the secondary transmitter to the secondary receiver. The secondary receiver and the eavesdropper are equipped with multiple antennas, and passive eavesdropping is considered where the channel state information of the eavesdropper’s channel is not available at the secondary transmitter. We present new closedform expressions for the exact and asymptotic secrecy outage probability. Our results reveal the impact of the primary network on the secondary network in the presence of a multi-antenna wiretap channel.
Resumo:
We consider transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decodeand-forward (DF) relaying in Nakagami-m fading channels. In an effort to assess the performance, the probability density function and the cumulative distribution function of the endto-end SNR are derived using the moment generating function, from which new exact closed-form expressions for the outage probability and the symbol error rate are derived. We then derive a new closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expressions for the outage probability and the symbol error rate, as well as the high SNR approximations of the ergodic capacity, we establish new design insights under the two distinct constraint scenarios: 1) proportional interference power constraint, and 2) fixed interference power constraint. Several pivotal conclusions are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and the high SNR slope of the ergodic capacity is 1/2. For the second scenario, the diversity order of the outage probability and the symbol error rate is zero with error floors, and the high SNR slope of the ergodic capacity is zero with capacity ceiling.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
Tomato is the second most widely grown vegetable crop across the globe and it is one of widely cultivated crops in Sri Lanka. However, tomato industry in Sri Lanka facing a problem of high postharvest loss (54%) during the glut coupled with heavy revenue loss to the country by importing processed products. The aim of this work is to develop shelf-stable tomato product with maximum quality characteristics using high pressure processing (HPP). Tomato juice with altered and unaltered pH was processed using HPP at 600 MPa for 1 min after blanching (90 oC/2 min). As a control tomato juice was subjected to thermal processing (TP) at 95 oC /20 min. Processed samples were stored under 20oC and 28oC for 9 month period and analysed for total viable count (TVC) and instrumental colour (L, a, b) value at 0,1,2 3, and 4 week and 2, 3, 6 and 9 months interval. The raw juice sample had initial 6.69 log10 CFU/ml and both TP and HPP caused a more than 4.69 log10 reduction in the TVC of juice and microbial numbers remained low throughout the storage period even at 3 months after storage irrespective of the storage temperature. Both TP and HPP treated samples had the redness ⤘a value’ of 14.44-17.15 just after processing and showed non-significant reduction with storage in all the treatments after 3 months. The storage study results and discussed in relation to the end goal and compared with the literature.
Resumo:
New Findings
What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.
Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.
Resumo:
Genetic analysis on populations of European ash (Fraxinus excelsior) throughout Ireland was carried out to determine the levels and patterns of genetic diversity in naturally seeded trees in ash woodlands and hedgerows, with the aim of informing conservation and replanting strategies in the face of potential loss of trees as a result of ash dieback. Samples from 33 sites across Northern Ireland and three sites in the Republic of Ireland were genotyped for eight nuclear and ten chloroplast microsatellites. Levels of diversity were high (mean A R = 10.53; mean H O = 0.709; mean H E = 0.765) and were similar to those in Great Britain and continental Europe, whilst levels of population genetic differentiation based on nuclear microsatellites were extremely low (Φ ST = 0.0131). Levels of inbreeding (mean F IS = 0.067) were significantly lower than those reported for populations from Great Britain. Fine-scale analysis of seed dispersal indicated potential for dispersal over hundreds of metres. Our results suggest that ash woodlands across Ireland could be treated as a single management unit, and thus native material from anywhere in Ireland could be used as a source for replanting. In addition, high potential for dispersal has implications for recolonization processes post-ash dieback (Chalara fraxinea) infection, and could aid in our assessment of the capacity of ash to shift its range in response to global climate change.
Resumo:
There are many uncertainties in forecasting the charging and discharging capacity required by electric vehicles (EVs) often as a consequence of stochastic usage and intermittent travel. In terms of large-scale EV integration in future power networks this paper develops a capacity forecasting model which considers eight particular uncertainties in three categories. Using the model, a typical application of EVs to load levelling is presented and exemplified using a UK 2020 case study. The results presented in this paper demonstrate that the proposed model is accurate for charge and discharge prediction and a feasible basis for steady-state analysis required for large-scale EV integration.
Resumo:
BACKGROUND: The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually.
RESULTS: Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs.
CONCLUSIONS: The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines.
Resumo:
In this paper, we propose general-order transmit antenna selection to enhance the secrecy performance of multiple-input–multiple-output multieavesdropper channels with outdated channel state information (CSI) at the transmitter. To evaluate the effect of the outdated CSI on the secure transmission of the system, we investigate the secrecy performance for two practical scenarios, i.e., Scenarios I and II, where the eavesdropper's CSI is not available at the transmitter and is available at the transmitter, respectively. For Scenario I, we derive exact and asymptotic closed-form expressions for the secrecy outage probability in Nakagami- m fading channels. In addition, we also derive the probability of nonzero secrecy capacity and the \varepsilon -outage secrecy capacity, respectively. Simple asymptotic expressions for the secrecy outage probability reveal that the secrecy diversity order is reduced when the CSI is outdated at the transmitter, and it is independent of the number of antennas at each eavesdropper N_text\rm{E} , the fading parameter of the eavesdropper's channel m_text\rm{E} , and the number of eavesdroppers M . For Scenario II, we make a comprehensive analysis of the average secrecy capacity obtained by the system. Specifically, new closed-form expressions for the exact and asymptotic average secrecy capacity are derived, which are valid for general systems with an arbitrary number of antennas, number of eavesdroppers, and fading severity parameters. Resorting to these results, we also determine a high signal-to-noise ratio power offset to explicitly quantify the impact of the main c- annel and the eavesdropper's channel on the average secrecy capacity.
The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity
Resumo:
Although the NO removal-based air-purification ISO method ISO 22197-1:2007 is well established, its preconditioning requirements mean that only the initial activity of the photocatalyst under test is measured owing to the often-reported, gradual alteration of the surface kinetics for NO oxidation by air through the accumulation of surface HNO3. Herein, we compare the photocatalytic NO removal abilities of a number of different, common TiO2 materials, surface-saturated with photogenerated HNO3, with their behaviours observed during the typical 5 h-long ISO standard test. It is found that all the TiO2 materials studied eventually become largely NO to NO2 converters after sufficient exposure to NO under irradiation (>5 h) due to the accumulation of surface HNO3. The UV exposure time, t*, necessary to reach this HNO3 saturated condition is different for each different catalyst. As a consequence, an alternative preconditioning process for the ISO method is proposed which can be used to provide a more realistic measure of the photocatalytic activity of the underlying material and provide a measure of the NOx removing capacity of the photocatalytic material under test.
Resumo:
A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode.